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The projective geometry underlying the ambiguous case of scene reconstruction from
image correspondences is developed. The ambiguous case arises when reconstruction
yields two or more essentially different surfaces in space, each capable of giving rise
to the image correspondences. Such surfaces naturally occur in complementary pairs.
Ambiguous surfaces are examples of rectangular hyperboloids. Complementary
ambiguous surfaces intersect in a space curve of degree four, which splits into two
components, namely a twisted cubic (space curve of degree three), and a straight line.

For each ambiguous surface compatible with a given set of image correspondences,
a complementary surface compatible with the same image correspondences can
always be found such that both the original surface and the twisted cubic contained
in the intersection of the two surfaces are invariant under the same rotation through
180°. In consequence, each ambiguous surface is subject to a cubic polynomial
constraint. This constraint is the basis of a new proof of the known result that there
are, in general, exactly ten scene reconstructions compatible with five given image
correspondences.

Ambiguity also arises in reconstruction based on image velocities rather than on
image correspondences. The two types of ambiguity have many similarities because
image velocities are obtained from image correspondences as a limit, when the
distances between corresponding points become small. It is shown that the amount
of similarity is restricted, in that when passing from image correspondences to image
velocities, some of the detailed geometry of the ambiguous case is lost.

1. Introduction

The possibility of obtaining information about the shape of the environment from
the correspondences between two images first arose during the 19th century with the
invention of photography. The methods developed for exploiting this possibility
were based on projective geometry since projection provides a good model for image
formation. At first the shape of the environment was reconstructed from image
correspondences by linear methods (Sturm 1869), which did not make full use of the
rigidity of the environment. Later methods incorporated the rigidity constraint
(Faugeras & Maybank 1989; Kruppa 1913), thus allowing reconstruction with fewer
image correspondences, but at the cost of greatly increasing the complexity of the
reconstruction algorithm.

More recently methods for reconstruction have been transformed by the advent of
electronic cameras and computers. Large numbers of images are obtained by an
electronic camera in a short space of time, the image correspondences are found
automatically, and reconstruction is carried out by a computer algorithm. In this
way a robot or an automatic vehicle can obtain useful information by passive means
well suited to a wide range of environments. The modern approach to reconstruction
is based on euclidean geometry and the vector calculus, rather than on projective
geometry (Longuet-Higgins 1981; Tsai & Huang 1984). A very large number of
algorithms for reconstruction have been published in the computer vision literature.
For example, linear algorithms have been constructed by Longuet-Higgins (1981),

Phil. Trans. R. Soc. Lond. A (1990)
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The projective geometry of ambiguous surfaces 3

and Tsai & Huang (1984). Examples of nonlinear algorithms are given by T.
Buchanan (unpublished work, 1987) and Horn (1990).

Experiments by Fang & Huang (1984) have shown that reconstruction is often
unstable, in that small changes in the positions of corresponding image points lead
to large changes in the reconstructed scene points. An extreme case of instability
arises when a set of image correspondences is ambiguous, in that the set is compatible
with two or more essentially different reconstructions. The ambiguous case can thus
be regarded as a first approximation to the more common unstable case. The
ambiguous case has the advantage of being accessible to mathematical analysis. At
the same time it contains the essential features of the more general unstable case.

Ambiguity has been studied previously using both the older projective goemetric
approach (Faugeras & Maybank 1989; Hofmann 1950; Kruppa 1913 ; Sturm 1869),
and the newer euclidean approach (Horn 1990; Longuet-Higgins 1988;
Negahdaripour 1989). In this paper the projective geometric approach to ambiguity
is developed in detail, using the work of Buchanan (1987), Hofmann (1950) and
Wunderlich (1942) as a starting point. A number of new results are obtained, the
most important among these being a cubic polynomial constraint on ambiguous
surfaces. This constraint is the basis of a new proof of Demazure’s (1988) result that
there are in general exactly ten camera displacements compatible with five given
image correspondences. It is thought that the results on ambiguity described in this
paper will lead to a better understanding of the instabilities arising in reconstruction
based on image correspondences.

1.1. Overview

In §2 two formulations of the reconstruction problem are described, based
respectively on euclidean geometry and projective geometry. Ambiguous surfaces
are defined, and some of the basic properties of ambiguous surfaces are obtained. The
projective geometry required in later sections is introduced in §3 and §4. In
particular, involutions are discussed in detail, since they play a key role in the study
of ambiguity. The properties of rectangular quadrics are discussed in §5, with
particular emphasis on the rigid involutions of rectangular quadrics.

Certain space curves of degree three naturally arise in the study of ambiguity.
These are the horopter curves described in §6. It is shown that each horopter curve
is invariant under a unique non-trivial rigid involution. The connections between
rigid involutions of horopter curves and rigid involutions of ambiguous surfaces are
described.

The results of §5 and §6 are applied in §7. It is shown that an ambiguous surface
is invariant under a rigid involution that interchanges the two possible camera
positions for the second image. In consequence, ambiguous surfaces are subject to a
cubic polynomial constraint. In §8 this constraint is used to show that there are, in
general, exactly ten camera displacements compatible with five given image
correspondences. The analogous results for reconstruction based on image velocities
rather than image displacements are discussed in §9. It is shown that the cubic
constraint on ambiguous surfaces still applies, but in a much simpler form. Much of
the detailed geometry associated with ambiguity is lost on passing image velocities.
Some concluding remarks are made in §10.

The results obtained in §§2-5 are not new, although to the author’s knowledge
they have not previously been gathered into a single convenient reference. The
results of §6 are also known, with the possible exception of the classification of

Phil. Trans. R. Soc. Lond. A (1990)
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4 S. J. Maybank

horopter curves contained in an ambiguous surface and invariant under the
involution 7,. Most of the results obtained in §§7-9 are new. Among these, the most
important is the cubic constraint on ambiguous surfaces obtained in theorems 7.3 to
7.5.

1.2. Notation

The notation follows that of Semple & Kneebone (1952). Euclidean three-
dimensional space R? is regarded as a subset of projective space P2, Points of R® have
coordinates |[x,,,,2,], and points of P?® have coordinates (x,,,,;,2,). The
embedding R* c P*? is the usual one

[, Ty, Xy | (24, X5, 25, 1).

The set P?\R? is a plane, IT,, known as the plane at infinity. The coordinates x; of
R3 and P? are usually chosen to be rectangular, in which case they are referred to as
cartesian coordinates.

Points of P? are typically denoted by 0,a, b, x,y, and lines of P? are denoted by g,
h, k. The line joining two distinct points a, b of P? is <a, b), and similarly, the plane
containing the line g and the point @ not on g is (g, a). This notation is extended to
an arbitrary number of lines and points. For example, {g,h,a) is the smallest
subspace of P® containing the lines g, A and the point a. Occasionally lines are given
in the parametrized form

t—~a+tb,
where ¢ is a scalar, and a, b are fixed points. Planes in [?® are typically denoted by I7,
@, E; quadric surfaces are denoted by i, ¢; conics are denoted by s; and twisted
cubics (space curves of degree three) are denoted by c.

Let a point o of R? be fixed as an origin. Then each point x of R® defines a vector,
namely, the line segment from o to x. This vector is denoted by the same symbol x
as the point x. The dot product x-y and the vector product x x y of vectors x,y are
formed in the usual way (Sokolnikoff & Redheffer 1966). Each non-zero vector x =
(%y, 2y, 24, 2,) corresponds to a unique point (x,, z,, 5, 0) of I1 known as the direction
of x. The points of 11, can thus also be regarded as vectors. If x, y are points of IT
then x x y is defined to be the point of 11, corresponding to the direction orthogonal
to the directions of x and y.

The tensor product of two vectors x,y is denoted by x ® y. In applications of the
tensor product x and y are points of P? contained in the plane , = 0. The product
x @y is defined to be the 3 x 3 matrix with i, jth entry equal to x,y, for 1 <¢,j < 3.
As the coordinates of x and y are only defined up to a non-zero scalar multiple,
x ® y is only defined up to a non-zero scalar multiple.

Invertible linear transformations (collineations) of projective space are typically
denoted by w, and involutions are typically denoted by o, 7. The value of  at a point
x is wx (without brackets). If § is a set of points, for example a line, or a plane, then
o(8) (with brackets) is the set of wx as x ranges over S. If w(S) = S then S is said to
be invariant under w.

2. Scene reconstruction

In the reconstruction problem, two images of the same set of scene points p, are
taken from distinct projection points, 0 and a, as illustrated in figure 1. The p, are
assumed to be fixed rigidly with respect to 0 and a. The point o is referred to as the
optical centre of the first camera, and a is referred to as the optical centre of the
second camera. The imaging surface of each camera is the unit sphere with centre at

Phil. Trans. R. Soc. Lond. A (1990)
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The projective geometry of ambiguous surfaces 5

y A A 2,

Figure 1. Two views of a set of points in space.

the optical centre of the camera, and the image is formed on the imaging surface by
polar projection. Each scene point p, gives rise to corresponding points ¢g,, q; in the
first and second images respectively. The correspondence between ¢, and gq; is
denoted by g, < q;.

In practice, the camera projection is more complicated than polar projection onto
the unit sphere. This discrepancy between theory and experiment is overcome by
calibrating the camera. The acquired image is then transformed in order to obtain
the image that would have arisen from polar projection.

2.1. Buclidean treatment of ambiguity

Each camera has associated to it a coordinate frame in which the positions of the
image points are measured. The displacement of the second camera with respect to
the first is specified by giving the translation vector from the first optical centre o to
the second optical centre a, and the rotation R needed to bring the two camera
coordinate frames into alignment after carrying out the translation. It is assumed
that det (R) = 1, to exclude the possibility that the two coordinate frames differ by
a reflection. When specifying the relative displacement of the cameras by a pair
{R, a} it is assumed that cartesian coordinates have been chosen with the origin o at the
optical centre of the first camera. The translation vector a is the identified with the
point a at the optical centre of the second camera. If {R,a} is known then the
positions p, of the scene points relative to the two cameras are easily calculated from
the image correspondences. The reconstruction problem thus reduces to the problem
of recovering {R, a} from the image correspondences.

Let the coordinates of the image points ¢, and g; be measured in the appropriate
camera coordinate frame, and let p,, p; be scalars such that the position of p, relative
to o is p, q;, and such that the position of p, relative to a is p;q;. It follows from the
definition of {R, a} that

piq; = R(p;q;—a). (1)
A precise formulation of the reconstruction problem is now possible: given =
image correspondences g,< gq;, find {R,a} and p,, p; such that (1) holds for each ¢,
1<i<n.

The well-known scaling ambiguity inherent in reconstruction (Horn 1990) is
apparent from (1). If p,, p; and a are scaled by the same non-zero constant A, then

Ap;q; = R(Ap;q,—Aa),

thus {R,a} and {R, Aa} are both compatible with the same image correspondences
q; < q;. The camera displacements {R, a} and {R, Aa} cannot be distinguished using

Phil. Trans. R. Soc. Lond. A (1990)
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6 S. J. Maybank

only image correspondences. The scaling ambiguity is a mathematical formulation of
the fact that a large object far from the camera gives rise to the same image as a
similar but smaller object near to the camera. In view of the ever present scaling
ambiguity, the camera displacements {R,a} and {R, Aa} are counted together as a
single solution to the reconstruction problem. If it is necessary to specify a unique
value of a, then arbitrary conditions such as a-a = 1, a; > 0 can be imposed.

Ambiguity in reconstruction is distinct from the ubiquitous scaling ambiguity.
Ambiguity in reconstruction arises when two camera displacements {R, a}, {S, b} are
compatible with the same image correspondences, even though Aa # b for all A. In
discussing ambiguity it is convenient to make the following definition.

Definition 1.1. Two camera displacements {R, a} and {S, b} are essentially different
ifaxb #0.

Longuet-Higgins (1988) shows that if {R, a} and {S, b} are camera displacements
compatible with the same image correspondences such that a xb = 0, then either
R =8, or R = oS where o is a rotation of 180° about the axis Ra. The displacements
{R,a}, {oR,a} are called a twisted pair (Horn 1990). In this paper twisted pairs are
counted as a single solution to the reconstruction problem. Thus when considering
two solutions {R, a}, {S, b} to the reconstruction problem it is always assumed that
axb#0.

The equation of an ambiguous surface is obtained using the method given by
Longuet-Higgins (1988). Let {R,a}, {S,b} be two essentially different camera
displacements compatible with the same set of image correspondences g« ¢q’. (The
subscript ¢ is omitted from now on.) It follows from (1) that there exist scalars p,,

*and p,, p, such that
e B by Piq =R(p,q—a), (2)
P29 =S(p:9—b). (3)
As g varies the point p, g traces out a surface compatible with a displacement of the
optical centre of the camera from o to a; and similarly, as g varies the point p,q
traces out a surface compatible with a displacement of the optical centre of the
camera from o to b. The two surfaces formed in this way are known as complementary
ambiguous surfaces.

The vector product of (2) and (3) yields

R(p,q—a)xS(p,q—b) = 0. 4)
The scalar product of (4) with Sb is homogeneous in p,. After cancelling p, from the
scalar product the following expression for p, is obtained:

p, = (RaxSq)-Sb/(Rq xSq)-Sb. (5)
Similarly, the scalar product of (4) with Ra yields
Py = (SbxRq) Ra/(Sq x Rq) Ra. (6)

On setting x =p,q in (5) and x = p,q in (6) the following equations for the
complementary ambiguous surfaces are obtained.
(Rx xSx)-Sb = (RaxSx)-Sb, (SxxRx) Ra= (SbxRx) Ra.

On setting U = STR, the equations for the complementary ambiguous surfaces

become
(Uxxx)b= (Uaxx)-b, (7)

(Uxxx)-a= (U xx) a. (8)
Phil. Trans. R. Soc. Lond. A (1990)
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The projective geometry of ambiguous surfaces 7

Figure 2 Figure 3

Figure 2. The geometry of ambiguity.

Figure 3. Geometric construction of an ambiguous surface.

The surfaces (7) and (8) are denoted respectively by ¢ and ¢. Each surface is of
degree two. The surfaces 3 and ¢ both contain the origin o, and the two possible
optical centres a and b of the second camera.

Equations (7) and (8) are in a form appropriate for points x = [, #,, x;] in R®. The
corresponding equations for projective space P? are obtained by introducing a new
coordinate x,, and writing (7) and (8) in homogeneous form (Walker 1962). For
example, (7) becomes

(Uxxx)b=ua,(Uaxx)b. 9)
Equation (7) is recovered from (9) on setting x, = 1. It follows from (9) that the conic
formed by the intersection of i with the plane at infinity, , = 0, is given by

(Uxxx)-b=0. (10)

2.2. Projective geometric treatment of ambiguity

The projective geometric formulation of the reconstruction problem is as follows.
As in §2.1, let two images of the same scene be obtained from cameras with optical
centres at distinet points 0 and a. A point g in the first image defines a projection line
{0, q) such that all points on this line project to ¢, and similarly, a point ¢’ in the
second image defines a projection line {a, ") such that all points on this line project
to q¢’. Thus image formation is modelled as a linear transformation from the points
of P to the two-dimensional projective space of lines (i.e. sight rays) passing through
the optical centre of the camera. The lines {o,¢) and {a, q") correspond if and only
if they intersect at a scene point p.

In the ambiguous case there exist points a, b on distinct lines through o, such that
the camera taking the second image can have its optical centre either at a or at b.
Let ¢ be the line of points projecting to a point g in the first image. Let » be the line
of points projecting to the corresponding point g’ in the second image when the
optical centre of the second camera is at a, and let s be the line of points projecting
to ¢’ in the second image when the optical centre of the second camera is at b. Then
q is the unique common transversal of » and s passing through o, as illustrated in
figure 2.

The image taken by the second camera is unchanged whether the camera is
thought to be at a or b, thus the angles between pairs of lines r;, 7; through a are equal

Phil. Trans. R. Soc. Lond. A (1990)
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8 S. J. Maybank

to the angles between pairs of lines s;, s; through b associated with the same image
points as r;,r;. It follows that there is a linear orthogonal (i.e. angle preserving)
transformation o from the lines through a to the lines through b such that wr = s.

The linear transformation w is the basis of a geometrical method for constructing
ambiguous surfaces given by Wunderlich (1942), and illustrated in figure 3. The
transformation w induces a linear transformation, also denoted by w, from the planes
through a to the planes through b, such that if a line » through a is contained in a
plane IT then wr is contained in w(I1). Let h be the line through a such that wh =
{o,b). If I1 is any plane containing h, then w(II) contains <o, b). As II varies through
the one-dimensional projective space of planes containing 4, w(II) varies through the
one-dimensional projective space of planes containing {o,b). The line | = IT N w(II)
sweeps out the ambiguous surface, i, associated with the camera displacement from
o to a.

To prove that [ sweeps out yr, let p be any point of [, let » = {a, p), and let s be the
line wr through b. Then s and {o, p) are contained in w(II), thus s intersects {o,p).
It follows that <o, p) is the unique common transversal of r, s pasing through o. The
point p is thus in . Hence the entire line [ is contained in ¢ as required.

It follows from this construction that i contains 4 and {o,b). To prove this, it
suffices to note that [ = IT N w(II) meets both h and {o,b). As II varies, the points
Inh and N <o,b) sweep out the whole of & and <o, b) respectively.

The degree of ¥ is readily obtained. The surface i contains the skew lines 4 and
{0,b), thus ¥ is not a plane. The degree of r is thus at least two. Let k be a fixed
line in space. As I varies through the space of planes containing A, the linear
transformation I7T+>w(II) induces a linear transformation p of k defined by
pIINk) =w(I)Nk. The fixed points of p are precisely the points at which k
intersects 1. The projective linear transformation p has at most two fixed points,
thus & meets ¥ in at most two points. It follows that the degree of i is at most two.
In consequence, the degree of ¥ is exactly two.

2.3. The intersection of complementary ambiguous surfaces

1t has been shown in §2.1 that each ambiguous case of the reconstruction problem
has associated with it two complementary ambiguous surfaces, i and ¢, defined by
(7) and (8) respectively. The surfaces i, ¢ are each of degree two, thus the
intersection ¥ N ¢ is a space curve of degree four. Some properties of the curve i N ¢
are now obtained.

With the notation of §2.2, let @ be the plane {h,0). It follows from the
construction of i described in §2.2 that the line ¢ = @ N w(P) contains o and is
contained in ¥. A comparison of (7) and (8) shows that the equation for ¢ is obtained
from the equation for { by interchanging a and b, and then replacing the orthogonal
matrix U by U*. It follows that ¢ is obtained by a construction similar to that of §2.2
by interchanging a and b and replacing w by w™'. Thus ¢ is swept out by the lines
E N w (%) as = ranges through the pencil of planes containing w{o, a). In particular,
w(®) contains w0, a), thus ¢ contains the line

o(P) N lw(d) =g.

It follows that the line ¢ is contained in ¥ N ¢, thus the space curve ¥ N ¢ splits into
g and a space curve ¢ of degree 3 =4—1. The curve ¢ is an example of a horopter
curve (Buchanan 1987; Helmholtz 1925). It is the locus of points x such that

x =<a,x)Nwla,x). (11)
Phil. Trans. R. Soc. Lond. A (1990)
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The projective geometry of ambiguous surfaces 9

The curve ¢ meets every line of the form [ = II N w(II) twice as II ranges through
the pencil of planes containing 4. This fact follows from the general properties of
twisted cubics contained in quadric surfaces (Semple & Kneebone 1952). A direct
proof is obtained by noting that if p is any point of I then w{a, p)> meets [, and the
correspondence p—w{a, py N1is a projective linear transformation from [ to itself. A
projective linear transformation of a line has, in general, exactly two fixed points.
These two fixed points are precisely the points I N c. As a special case of this result,
¢ meets the line ¢ twice.

In contrast, ¢ meets {o,b) exactly once. To show that ¢ meets <o,b) note that
wla,b) contains b. 1t follows that b = {a,b) N wa,b) is a point of ¢. If ¢ were to
meet {0, b) twice then the plane spanned by <o, b) and any line | = I1 N w(II) would
intersect ¢ at four points, contradicting the fact that ¢ is a cubic space curve.

The above results can be obtained from (7) and (8) by algebraic arguments. For
example, it follows from (7) and (8) that g is given in parametrized form by

t>t(ax UTh) x (Ua x b). (12)
To prove that the line of (12) lies in ¥, it suffices to show that the vector

n= (axU)x (Uaxb)
satisfies the equations

(Unxn)b=0, (Uaxn)-b=—Uaxb) n=0.

The proof that ¢ is contained in ¢ is similar. Full details are given by Negahdaripour
(1990).

3. Projective geometry

The projective geometry relevant to the study of ambiguity is reviewed briefly.
Projective geometry can be studied either synthetically, by using arguments based
directly on the properties of geometric objects such as lines, planes, conies, ete., or
analytically, by using polynomial equations (Semple & Kneebone 1952). The
synthetic approach gives a greater insight into the underlying geometry, making it
easier to formulate conjectures, and to find ways of proving or disproving them. In
contrast, the analytic approach often leads to complicated polynomial equations, the
properties of which are not immediately apparent. However, the analytic approach
is easier to make rigorous, and it becomes essential when practical applications to
computer vision are considered (Hofmann 1950). Both the synthetic and the analytic
approaches are used as appropriate.

A point of projective n-dimensional space P” is represented by an (n+ 1)-tuple of
coordinates (#,, ..., %,.,), where at least one of the x; is non-zero. Two (n+ 1)-tuples
(@), s Zpyq) and (yy,...,Y,,,) represent the same point of P" if and only if there
exists a non-zero scalar A such that x; = Ay, for 1 <47 < n+1. The space P! is called
the projective line, and P? is called the projective plane. A one-dimensional
projective space is often referred to as a pencil, and a two-dimensional projective
space is often referred to as a star. A projective subspace of P” of dimension n—1 is
called a hyperplane.

Let p be a point of P" with coordinates (xy,...,7,,,), and let x; be any non-zero
coordinate of p. Then p is also represented by the coordinates (x,/x;,...,%,,,/%)),
with 1 in the jth position. The coordinates (x,/x;,...,,,,/¥;) are inhomogeneous
coordinates of p, and the original coordinates (z,,...,%,,,) are homogeneous
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10 S. J. Maybank

coordinates of p. The values of the inhomogeneous coordinates of p depend on the
choice of j. In the case of P!, a point with homogeneous coordinates (z,,x,) has
inhomogeneous coordinates (o, 1) where o = x,/x,. The points of P! are thus
parametrized by a single scalar variable a, and every point of P! is included in the
parametrization provided the value a = oo, corresponding to (1,0) is allowed.

The effectiveness of projective geometry is partly due to the fact that projective
spaces arise naturally in many different circumstances. For example, in [** the lines
containing a fixed point form a pencil of lines, in [*® the lines containing a fixed point
form a star of lines, and again in 3, the planes containing a fixed line form a pencil
of planes. Stars of lines arise in §2.2 as part of a model for the process of image
formation, and pencils of planes arise in §2.2 in the geometric construction of
ambiguous surfaces.

3.1. Collineations

A collineation is an invertible linear transformation from one projective space to
another. If coordinate systems are chosen for the two projective spaces then the
collineation is represented by an invertible matrix. Two invertible matrices represent
the same collineation if and only if one matrix is a non-zero scalar multiple of the
other.

A special notation is employed for collineations of P'. Let w be a collineation of P?,
and let x,y be points of P! such that wx = y. The correspondence x < y is called a
homography, and is denoted by x A y. If x A y implies y A x then the homography
and the associated collineation are both referred to as involutions. A collineation is
an involution if and only if it is equal to its own inverse.

Let x,,x,, ..., x,., be points of P* chosen such that no hyperplane of P" contains
n+1 of the x;. Then any collineation w from P” to a second projective space is
uniquely determined by the n+42 points wx,. Conversely, if any n+2 points y, are
selected in a second projective space P™ then there exists a unique collineation
from P" to P"" such that wx; = y,. In particular, if x; =y, for all 4, then w is the
identity. As a special case, a collineation of P! is uniquely defined by its values at
three distinct points, and any collineation from P! to itself that fixes three distinct
points is the identity.

3.2. Conics

A conic s is a set of points of P? satisfying an equation xTMx = 0, where M is a
symmetric 3 X 3 matrix. Two symmetric 3 X 3 matrices represent the same conic if
and only if one matrix is a non-zero scalar multiple of the other. The conic s is non-
singular if and only if M has a non-zero determinant.

Each non-singular conic defines a collineation, known as a polarity, from the
points of P? to the lines of 2. To define the polarity 7 associated with s, let a be any
point of P2, and let the two tangents to s drawn from a touch s at p, g as shown in
figure 4. Then ma = {p,q). If a is a point of s then ma is the tangent line to s at a.
The line 7a is said to be the polar of a with respect to s, and a is said to be the pole
of ma with respect to s.

The transformation a+ 7a is given in coordinate form by a+ a™M, since a point x
of P? is on the line 7a if and only if a®Mx = 0. This shows that the transformation
a—7a is a collineation as claimed.
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The projective geometry of ambiguous surfaces 11
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Figure 4. The polar of a point with respect to a conic.

3.3. Buclidean transformations and the absolute conic

The problem of reconstructing a scene from image correspondences involves both
projection, as a model for the process of image formation, and rigidity, as a basic
assumption about the scene in view. Thus the formulation of the reconstruction
problem within projective geometry requires a projective geometric treatment of
rigidity. This is done by selecting a subset of the collineations of [*® known as the
euclidean transformations. Euclidean transformations are defined to be collineations
from [P? to itself that leave invariant a particular conic known as the absolute conic.
EKuclidean transformations preserve angles and the ratios of lengths, thus they
preserve the properties of rigid configurations of points up to a uniform change of
scale. This scale change does not add to the difficulty of the reconstruction problem
because reconstruction from image correspondences always involves an unknown
scale factor.

Let an arbitrary system of coordinates be chosen for P2. The absolute conic, 2, is
a non-singular conic without real points, chosen in P3. The plane containing Q is
referred to as the plane at infinity, I7 . It is immaterial which conic is chosen as the
absolute conic, because the same theory of euclidean transformations is obtained
independently of the choice. It is, however, important to keep £ fixed once the choice
has been made. The euclidean transformations are, by definition, those collineations
of P? that leave £ invariant.

The close connection between euclidean transformations and rigid displacements
becomes apparent on working out the consequences of a particular choice for Q2. Let
(@), X4, %4, ;) be the coordinates of P® and let £ be the conic

x, =0, ait+ai+ai=0. (13)
The plane IT,, is z, = 0. Let p be a rigid displacement of R®. Then p has the form
[, @y, 23] > [, + 1), 2y + by, 25+ 1] RT, (14)

where R is an orthogonal matrix, and ¢ is a translation vector. (Equation (14) is
expressed in terms of row vectors only because this simplifies the layout of the
formulae on the page.) The extension of p to P? is given by

(0, g, Xy, ) > ([ 2y ty, @y + @y by, g+ 2, ] BT, ).
The restriction of p to I1 is given by

(), @y, 24, 0) > ([, 4, 24 ] RT, 0). (15)
Phil. Trans. R. Soc. Lond. A (1990)
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12 S. J. Maybank

It follows from (13) and (15) that p(2) = £, thus the rigid displacement p is a
euclidean transformation. The converse result holds up to a scale factor, as shown in
the following theorem.

Theorem 3.1. Let a cartesian coordinate system be chosen for P2. Then a collineation
w of P? is a euclidean transformation if and only if

1

[S)

W= , (16)

T31 732 733

0O 0 0

w

l
Tor Tag eyt
l
t

4,

where t, # 0 and the 3 x 3 matrix R formed by the ry; satisfies R*R = ul for some non-zero
scalar w.

Proof. If v is given by (16) then w(2) = 2, thus w is a euclidean transformation.
Conversely, let  be a euclidean transformation of P? with the matrix representation

1

[S]

3

=
w
=
=
w
0
=X
1%
@
T T S S

4

Define ry, 1y, 1y by 1y = (15,705, 705)" Py = (Py1, 799, 795)", P35 = (rgy, g9, 755)". The
absolute conic Q contains the points p = (1,1,0,0)", ¢ = (1, —i,0,0)*, and by

hypothesis, w(2) = 2, thus

wp wp =wq-wg =0, (vp),=(vg),=0.
It follows that
(Fy+iry) - (ryt+iry) = (ry—iry)  (r,—ir,) = 0,

Ty Firyy = 14y —irg, =0,

hence ry-r, =ry 1y, 1 1y, =0, and r,; =r,, = 0. Similarly, € contains the points
0,1,1,0), (0,1, —i,0)*, thus ry-ry, =r, 1y, ¥,-ry; = 0 and 7,5, = 0. The result follows
on setting

W=TFF =FyFy =Ty F,.

The variables 4 and ¢, are non-zero since w is a collineation and thus, by definition,
invertible. O

A coordinate system in which £ has the form (13) is referred to as a cartesian
coordinate system. The origin of cartesian coordinates is usually chosen to be the
point (0,0, 0, 1)T. The space P3\II, is the euclidean space R?*. The points of R? (as a
subset of P?) have inhomogeneous coordinates (x,,x,,x,, 1), which yield the usual
coordinates [x,, x,, x;] within R3.

Once 2 is chosen, orthogonality of vectors is defined with respect to 2. Two points
m,n of II  are said to be orthogonal if m is on the polar line of n with respect to €.
In cartesian coordinates this definition of orthogonality reduces to the usual
definition, m-n = 0.

It follows from theorem 3.1 that in a cartesian coordinate system a collineation of
11 leaves  invariant if and only if it is represented by an orthogonal matrix. In
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The projective geometry of ambiguous surfaces 13

consequence, the properties of orthogonal matrices, and hence the properties of
rotations are ‘really’ properties of conics. Theorem 3.2 illustrates this point of view.
An orthogonal collineation is, by definition, a collineation of I1, that leaves
invariant.

Theorem 3.2. Let w be an orthogonal collineation of the plane at infinity such that ®
is not the identity, and let n be a fixed point of w not contained vn the absolute conic. Then
the polar of n with respect to the absolute conic tntersects the absolute conic at fixed points
of .

Proof. Let mn be the polar of n with respect to the absolute conic Q, and let i, j,
be the two points of 7n N Q2. From the definition of 7n given in §3.2, i, and j, are the
points of contact of the tangents drawn from n to Q. Both € and 7n are invariant
under w, thus i,, j, are either fixed by » or interchanged by w.

If i,, j, are fixed by o then the result follows. Suppose, if possible, that w
interchanges i, and j,. The line <{i,.j,) is invariant under w, thus » has a fixed point
mon {i,,j,>. Leti,,j, bethe points of contact of the tangents drawn from m to Q.
Then o? fixes the four points i,,, j,,.. i,, J,- All four points are on £, thus no three of
the points are collinear. It follows that w? is the identity, contrary to hypothesis.

O

Corollary. The point n is the unique fixed point of w not contained in Q. To show this,
it suffices to note that w has an additional fixed point m not contained in Q only if w* is
the identity.

The reference in theorem 3.2 to i, and j, as fixed points of w is at first sight
confusing. If 4 is the matrix representing » then

Ai, = MNiy,  Aj, = pj,,

where A, u are eigenvalues of 4 not equal to 1. However, in projective geometry, i,
is identified with Ai,, and j, is identified with yj,, even though A, u # 1. It is thus
legitimate to write

=1y, Wy =Jn

and to refer to i, and j, as fixed points of w.

wi,

3.4. Quadric surfaces

A quadric ¥ is a set of points in [P?® satisfying an equation of the form x™Mx = 0,
where M is a symmetric 4 x 4 matrix. The quadric  is non-singular if and only if M
has a non-zero determinant. A straight line contained in ¥ is known as a generator
of . The generators of y are extremely useful for describing the geometry of .

The generators of i form two disjoint one-parameter families, #, and #,. Each
point p of ¥ is contained in exactly two generators, g,(p) and g,(p) belonging to #,
and &, respectively. Two generators of i intersect if and only if they belong to
different families. Thus a fixed generator g,(p) of %, intersects every generator of #,,
and a fixed generator g,(p) of Z, intersects every generator of #,. These properties
of generators are illustrated in figure 5.

An algebraic curve contained in i is said to be a (m,n) curve if it has m
intersections with each generator of %, and n intersections with each generator of
Z,. For example, the generators of &, are (0, 1) curves, and the generators of #, are
(1,0) curves. The conics contained in yr are (1, 1) curves.

Phil. Trans. R. Soc. Lond. A (1990)
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14 S. J. Maybank

Figure 5. Generators of a quadric surface.

The intersection of two non-singular quadrics ¥, ¥, is, in general, a space curve
of degree four which meets each generator of ¥, and ¥, twice. If ¥, and ¥, have a
common generator g, then ¥, Ny, = g Uc¢, where ¢ is a space curve of degree three
meeting g twice. The curve ¢ is either a (2, 1) curve or a (1, 2) curve.

The ambiguous surfaces described in §2 are, in general, non-singular quadrics, thus
the geometry of quadrics is applicable to the study of ambiguity. Ambiguous surfaces
contain generators with real (as opposed to complex) points, thus ambiguous surfaces
are hyperboloids of one sheet (Longuet-Higgins 1988). Conversely, each hyperboloid
of one sheet is an ambiguous surface.

3.5. Twisted cubics
A twisted cubic, ¢, is a curve of P? parametrized by cubic polynomials in a single
variable. Thus, by definition, there exists a transformation

(L, 6) = (f(0), g (D), h(t), k()

from P! to ¢, where f(t), g(t), h(t), k(t) are polynomials in ¢ of degree three or less. To
avoid degenerate cases it is assumed that ¢ is not entirely contained in a single plane.
Twisted cubics have already been encountered in §2.3 as one component of the space
curve formed by the intersection of two complementary ambiguous surfaces.

Any two non-singular twisted cubics are related by a collineation. For example, if
¢y, ¢, are twisted cubics with respective parametrizations

b A (1628, b Ay(L 8, 82, 83T,

where 4,, 4, are invertible 4 x 4 matrices, then w(c,) = ¢,, where w is the collineation
of P? defined by w = 4,A4;".

If ¢ is projected from a point p on ¢ then the resulting curve, s, is a conic. This is
proved as follows. An arbitrary plane through p meets ¢ at p and also at two further
points. The plane projects to a line meeting s at two points, thus s is of degree two.
Hence s is a conic.

There are many different ways of characterizing twisted cubics apart from
parametrization by cubic polynomials. A particularly useful way is star generation
(Semple & Kneebone 1952), which is illustrated in figure 6. In the figure, the points
a and b are centres of stars of lines in P?, and w is a collineation from the star of lines
through a to the star of lines through b. A point x is on the twisted cubic ¢ if and only
if

wla,x)y =<b,x>. (17)
Phil. Trans. R. Soc. Lond. A (1990)
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The projective geometry of ambiguous surfaces 15

wr

Figure 6. Star generation of a twisted cubic.

It can be shown that ¢ uniquely determines w. Conversely, if  is given, then the locus
of points x satisfying (17) is a twisted cubic.

It is often convenient to parametrize the stars of lines centred at @ and b by taking
the intersections of each line with a fixed plane I1. In this case, w can be regarded as
a collineation of I1. A point x is on ¢ if and only if there is a point r of IT such that

x =<a,ryN<b,wr). (18)

In the star generation of ¢, @ and b can be any two distinct points of ¢. Different
choices of a and b yield different collineations w.

4. Involutions

An involution is a collineation 7 from P to itself such that 72 is the identity. If 7
is the identity then it is said to be the trivial involution. Involutions are particularly
simple examples of collineations. In spite of this simplicity they play an important
role in the geometry of ambiguity. For example, ambiguous surfaces and horopter
curves are both invariant under non-trivial rigid involutions.

Involutions of P", involutions of conics, rigid involutions, and involutions of
twisted cubics are described, with particular emphasis on the fixed points of the
involutions. It turns out that the various types of involution are closely interrelated.
For example, rigid involutions are involutions of the absolute conic, and there are
close connections between involutions of conics, involutions of twisted cubics and
involutions of P'.

4.1. Involutions of P"

The general form of an involution of P" is obtained. In reconstruction the cases of
most interest are those for which n < 3.

Theorem 4.1. Let 7 be an involution of P". Then coordinates can be chosen such that
7 18 represented by o diagonal matriz with each non-zero entry equal to + 1, and such that
the positive entries precede the negative entries on the diagonal.

Proof. The result is obtained by induction starting at n = 1. Let 7 be an involution
of P!, and let b be a fixed point of 7. If 7 is the identity then the result holds. If 7 is
not the identity then there exists a point @ of P! such that 7a # a. Let coordinates
of P! be chosen such that a= (1,1)*, 7a= (1, —1)*, and b= (1,0)". Then 7 is
represented by a matrix of the required form.

Phil. Trans. R. Soc. Lond. A (1990)
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16 S. J. Maybank

Now suppose # > 1. The involution 7 induces an involution 7° of the » dimensional
space of hyperplanes of P*. If H is a hyperplane of P", then 7°H is the set of points
7x as x varies over the points of H. The involution 7” has at least one fixed point, thus
there exists a hyperplane H such that 77H = H. 1t follows that H is invariant
under 7.

The hyperplane H has dimension n—1, thus by the induction hypothesis, a basis
Xy, ...,x, of H can be found such that the restriction of 7 to H is represented by a
diagonal matrix with non-zero entries equal to +1. The basis x,,...,x, of H is
extended to a basis x,, ..., x,,, of P"* by choosing x,,,, to be a fixed point of 7 outside
H. A suitable point x,_, always exists for the following reason. Let a be any point
of P™ not contained in H. If 7a = a then set x,,, = a. If 7a # a then the line {a,7a)
is invariant under 7. It follows from the case n = 1 that 7 has two fixed points on
{a,1a). One of these fixed points is in H and one is outside H. This second fixed point
is chosen to be x, .

By construction, the matrix 4 representing 7 in the basis x,, ..., x,_, is diagonal.
As 7% is the identity, there exists a non-zero scalar A such that 4,, = + A for 1 < i <
n+1. The matrix 4 is determined by 7 only up to a non-zero scale factor, thus

without loss of generality A = 1. The basis x,,...,x,,, is reordered if necessary to
ensure that the entries 4,;, = 1 precede the entries 4;, = — 1 on the leading diagonal
of 4. 0

A complete description of the involutions of P!, P2, P? is obtained from theorem
4.1.

Theorem 4.2. 4 non-trivial involution of P has exactly two fixed points. A non-trivial
tnvolution of P? has a line of fixed points and a single fixed point not on the line. A non-
trivial involution of P? has either (a) two skew lines of fixed points; or (b) a plane of fixed
points and a single fixed point not contained in the plane. If an involution of P, P?, or
P? has strictly more fixed points than those listed then the involution is the identity.

Proof. A proof is given for P®. The proofs for P! and P? are similar. Let 7 be a non-
trivial involution of P3. It follows from theorem 4.1 that a basis of P? can be found
in which 7 is represented by a matrix 4 of the form

10 0 0
0 1 0 0
A=lo 0 -1 o (19)

0 0 0 —1
or by a matrix B of the form

B= . (20)
0 0 0 —1

In the first case 7 has two skew lines of fixed points, namely, ¢+ (¢, 1,0,0)T and ¢+
(0,0,¢,1)". In the second case 7 has a plane of fixed points 2, = 0, and a fixed point
(1,0,0,0)" not in the plane. It follows from (19) and (20) that 7 has no additional fixed
points beyond those specified in the statement of the theorem. |

The isolated fixed point of an involution 7 of P? is known as the vertex of 7, and
denoted by p,. If 7 is a rotation through 180° then p, may also be referred to as the
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The projective geometry of ambiguous surfaces 17

axis of 7. The involutions of P? with two skew lines of fixed points are known as skew
involutions, and the involutions of P? with a plane of fixed points and one additional
fixed point are known as harmonic homologies (Semple & Kneebone 1952). The
rotations of P® through 180° are examples of skew involutions, and the reflections of
P? in a plane are examples of harmonic homologies.

Theorem 4.3. An involution of P" is uniquely determined by its fixed points.

Proof. The result is immediate if the involution is the identity. Suppose then that
7 is a non-trivial involution of P!. It follows from theorem 4.2 that 7 has exactly two
fixed points p, g in P! Let coordinates of P! be chosen such that p = (1,0)*, ¢ =
(0, 1)T. Then 7 is represented by a diagonal 2 x 2 matrix with entries 1, — 1, down the
leading diagonal. Thus 7 is uniquely determined by p, ¢.

Next, let 7 be a non-trivial involution of P”, where n > 1. Let a be a point of P”
such that a # 7a. The line {a, 7a) is invariant under 7. It follows from the result for
P! that the restriction of 7 to {a, 7a) is determined by the fixed points of 7 contained

in {a,7a). ()

Theorem 4.4. Any line containing the vertex of a non-trivial involution of P?* is
invariant under the involution, and conversely, any line invariant under the involution
etther contains the vertex of the involution or it coincides with the line of fixed points of
the involution.

Proof. Let 7 be a non-trivial involution of P? with vertex p, and line of fixed points
g.. Let k be any line containing p,. Then £ contains two fixed points of 7, namely, p,
and kN g,, thus k is invariant under 7. Conversely, let k£ be any line of P? invariant
under 7. If k contains three or more fixed points of 7 then every point of £ is a fixed
point of 7 and thus k£ = ¢g,. If k£ contains exactly two fixed points of 7, then at least
one of these points does not lie on g,, thus one of the fixed points of 7 in k is p,. It
follows from theorem 4.2 that k does not contain strictly less than two fixed points
of 7. O

4.2. Involutions of conics

An involution of a conic s is defined to be an involution of the plane containing s
that leaves s invariant. There are close connections between involutions of conics and
involutions of P!, because a conic has a natural structure as a one-dimensional
projective space (Semple & Kneebone 1952). The next theorem illustrates this latter
connection, in that the result is similar in form to the part of theorem 4.2 applying
to P!

Theorem 4.5. A non-trivial involution of a non-singular conic has exactly two fixed
points on the conic, and these two fixed points uniquely determine the involution.

Proof. Let 7 be a non-trivial involution of a non-singular conic s, let p, be the vertex
of 7 and let g, be the line of fixed points of 7. Suppose, if possible, that p_is on s. If
p is any point of s then by theorem 4.4, {p,, p) is invariant under 7. It follows that
{p,,p> N sis invariant under 7, hence 7p = p. It follows that the restriction of 7 to s
is the identity. Hence 7 is the identity, contrary to hypothesis. The point p, is thus
not on s.

As p, is not on s there exist two tangent lines from p, to s. These tangents are
invariant under 7, thus the points #,s at which the two tangents touch s are fixed
points of 7 (see figure 7). Now 7 has at most two fixed points on s, namely the points
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Figure 7. Involutions of conics.

of g, N s. Thus 7 has exactly two fixed points on s. It follows that g = {(#,s>. The proof
is completed by noting that r,s uniquely determine g,, p,, thus r,s uniquely
determine 7. O

Corollary. Two distinct points a,b of s are interchanged by 7 if and only if {a,b)
contains p.. The corollary follows from theorem 4.4 and the fact that r, s are the only fixed
points of T on 8.

In the next theorem on the existence of involutions of conics relies on Steiner’s
theorem (Semple & Kneebone 1952). Steiner’s theorem states that if a,b are two
distinet points of P? and if w is a correspondence from the pencil of lines k& through
a to the pencil of lines through b such that £ A wk then the locus kN wk is a conic.
Conversely, if s is a conic, a,b are any two distinct points of s, and x is a variable
point of s, then the correspondence {a,x) < <{b,x) establishes a homography
between the pencil of lines through a and the pencil of lines through b.

Theorem 4.6. Let two distinct points be given on a non-singular conic. Then there is
a unique non-trivial tnvolution of the conic that fixes the two points.

Proof. Let r, s be distinct points on a non-singular conic s. It follows from Steiner’s
theorem that there exists a collineation w from the pencil of lines through r to the
pencil of lines through s such that s is the locus of the intersections k N wk as k varies
through the pencil of lines containing 7. 1t also follows from Steiner’s theorem that
if g, h are the tangents to s at r, s respectively, then wg = (r,s), w{r, s> = h.

Let 7 be the unique involution of P? with a line of fixed points {r,s), and a vertex
p. taken to be the pole of {r,s) with respect to s. The points 7, s are fixed by 7, thus
7 induces involutions 7,, 7, respectively, of the pencils of lines through r and s. Now
w 7,0 is an involution of the pencil of lines through r with the same fixed lines as
7,, namely <r,s) and {r,p,>, thus by theorem 4.3, 7, = v 7, w.

The conic s is the locus of k N wk as k varies through the pencil of lines containing
¥, thus the conic 7(s) is the locus of

TkNwk)=1knN1,wk=71kNwr, k. (21)
As k varies, 7,k varies through the pencil of lines containing r. It thus follows from
(21) that 7(s) = s. Hence 7 is an involution of s with fixed points #,s. The uniqueness

of 7 and the fact that r,s are the only fixed points of 7 on s follow from theorem
4.5. O

Theorem 4.7. Any point in the plane containing a non-singular conic, but not on the
conic, s the vertex of a unique non-trivial involution of the conic.
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Proof. Let s be a non-singular conic, let v be a point in the plane containing s but
not on s, and let r, s be the points of contact of the tangents drawn from v to s. It
follows from theorem 4.6 that there is a unique involution 7 of s with fixed points #,
s on s. It follows from the proof of theorem 4.5 that the vertex of 7 is equal to v. The
points r,s are uniquely determined by v, thus 7 is uniquely determined by ». [

An example of an involution of a conic is given. Let s be the unit circle in R® lying
in the x, y plane with centre at the origin. A non-trivial involution 7 of s is obtained
by rotating s through 180° about the x axis. The vertex of 7 is the point at infinity
on the y axis. The involution 7 interchanges two points a, b of s if and only if <a, b)
is parallel to the y axis.

4.3. Orthogonal involutions of I, and P?

A number of results concerning orthogonal involutions are gathered together for
future reference. It is possible to prove these results algebraically, without explicit
reference to the absolute conic; however, a geometrical style of argument is adopted,
since this clarifies the connections between these results and the general theory of
projective geometry.

Theorem 4.8. Let two distinct points tn the plane at infinity be given such that neither
point lies on the absolute conic, and such that the line joining the two points is not tangent
to the absolute conic. Then there are exactly two orthogonal involutions of the plane at
infinity that interchange the two points.

Proof. Let m, n be distinct points of I, not contained in £, such that {m, n) is not
tangent to 2, and let i,j be the points at which {m, n) intersects Q. It follows from
theorem 4.2 that there is a unique involution o of {m,n) such that om = n, oi =j.
Let p,,p, be fixed points of o, and let 7,,7, be orthogonal involutions of I, with
vertices at p, and p, respectively. It follows from theorem 4.2 that the restriction of
each 7, to {m,n) is equal to o, because 7,i = j, and because each 7; shares a fixed
point on {m,n)y with o. It follows that 7,m =n, 7,m = n.

The proof is completed by showing that 7, and 7, are the only orthogonal
involutions of I that interchange m and n. Let 7 be any orthogonal involution of
IT, such that Tm = n. It follows from theorem 4.4 that the vertex p, of 7 lies on
{m,n), and it follows from the Corollary to theorem 4.5 that 7i = j. By theorem 4.2
the restriction of 7 to {m, n) is equal to o, thus either p, = p, or p, = p,. In the first

case 7 = 7, and in the second case 7 = 7,. 0

If a cartesian coordinate system is chosen then the fixed points p; of o in the proof
of theorem 4.8 are the external and internal bisectors of the angles between m
and n.

Theorem 4.9. Let two distinct points be given in the plane at infinity such that the
points are not orthogonal and such that neither point is contained in the absolute conic.
Then there is exactly one non-trivial orthogonal involution of the plane at infinity that
fixes both points.

Proof. Let m, n be distinet non-orthogonal points of 11, such that neither point is
contained in Q. The orthogonal involution 7 of IT, with a line g, = {(m,n) of fixed
points necessarily fixes m and n. It remains to show that no other non-trivial
orthogonal involution of 11, fixes m and n.
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20 S. J. Maybank

Let o be a non-trivial orthogonal involution of I, with vertex p, and a line of fixed
points g, such that m, n are fixed points of o. It follows from the proof of theorem 4.5
that if m = p_ then n is on the polar line of m with respect to £2. In this case n is
orthogonal to m, contrary to hypothesis. Thus m # p,. Similarly, n # p,. It follows
that m,n are contained in g¢,, thus ¢, = ¢,, and hence o = 7. O

Theorem 4.10. A non-trivial orthogonal skew involution of P? is uniquely determined
by the line of fixed points of the involution not contained in the plane at infinity.

Proof. Let 7 be a non-trivial orthogonal skew involution of P*, and let g,, &, be the
two skew lines of fixed points of 7, chosen such that 4, is not included in I7_. The
involution 7 induces a non-trivial orthogonal involution of 17, with a line of fixed
points g,, and vertex kN II . It follows from the proof of theorem 4.5 that ¢, is the
polar of AN I, with respect to £2. Thus A, determines g,. The result follows because
the fixed points of 7 completely determine 7. O

Theorem 4.10 is simply a restatement of the result that a rotation through 180° is
uniquely determined by its axis.

The next result is a useful criterion for showing that certain involutions are
orthogonal.

Theorem 4.11. A non-trivial involution of the plane at infinity is orthogonal if it fixes
a point not on the absolute conic and if it also interchanges the points of contact of the
tangents drawn from the fixed point to the absolute conic.

Proof. Let 7 be a non-trivial involution of I1_ with a fixed point n not on € such
that 7 interchanges the two points of contact i,, j, of the tangents drawn from n to
Q. Let g, be the line of fixed points of 7. The conic 7(2) contains ¢, N 2, and in
addition, 7(£2) is tangent to <{m,i,) and {n,j,> at i, and j, respectively. A general
conic has five degrees of freedom. Each tangency imposes two linear constraints on
7(£2), thus there remains only a one-parameter family of possibilities for 7(£2). The
additional condition ¢, N7(2) =g,N Q2 ensures that 7(Q2)= Q. Hence 7 is an
orthogonal involution. O

The importance of involutions in the study of ambiguity arises from the fact that
an orthogonal collineation (rotation) is expressible as a product of two orthogonal
involutions in an infinite number of ways. This result is proved by Semple &
Kneebone (1952) as part of the general theory of conics. An alternative proof is given
as follows.

Theorem 4.12. An orthogonal collineation of the plane at infinity with exactly one fixed
point not on the absolute conic is expressible as the product of two orthogonal involutions
with vertices on the polar line of the fixed point with respect to the absolute conic. Any
point on the polar line, but not on the absolute conic, can serve as the vertex of either one
of the involutions. The vertex of the other involution is then uniquely determined.

Proof. Let w be an orthogonal collineation of IT_ with fixed point n not on 2, and
let 7 be an orthogonal involution of IT_ with vertex p, on the polar line, 7n, of n with
respect to . Then 7n = n, thus wrn = n. Let i, j, be the points at which 77n intersects
Q. It follows from the corollary to theorem 4.5 that 7i, = j,, thus by theorem 3.2,
wTi, =j,.

Define o by o = w7. It follows from theorem 3.2 that o is an involution, thus w =
o7 is a product of involutions. The involution o is uniquely determined by w and 7.
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Let p, be the vertex of o. It follows from the definition of o that oi, =j,. Thus
mn = {i,,j,> is invariant under o. The restriction of o to 77n is not the identity. It
follows that p_ is on 7n.

A similar argument applied to v~ establishes that the vertex of o can be chosen
to be any point on 7n, in which case w and ¢ uniquely determine 7. O

4.4. Involutions of twisted cubics

The properties of involutions of twisted cubics are summarized briefly. Full details
can be found in Semple & Kneebone (1952). An involution of a twisted cubic, ¢, is
defined to be an involution of the space P? containing ¢ that leaves ¢ invariant. There
are close connections between involutions of twisted cubics and involutions of P?,
because each twisted cubic has a natural structure as a one-dimensional projective
space.

Let ¢ be a twisted cubic with parametrization ¢ A(1,¢, % )T where (1,1) is a
general point of P! and A4 is a non-singular 4 x4 matrix. Each involution 7 of ¢
induces a unique involution of P! of the form

()= 00) )

where a, b, ¢, d depend on 7. Conversely, an involution of P! of the form (22) yields a
unique involution of ¢, and hence of the space P? containing ¢. Thus if a, b are any
two distinet points of ¢, then there is a unique involution of ¢ that fixes a and b.

The situation for collineations is similar. Each collineation of ¢ induces a unique
collineation of P! of the form (22). Conversely, each collineation of P! gives rise to a
unique collineation of P? that leaves ¢ invariant.

5. Rectangular quadrics

The rigidity constraint in the reconstruction problem ensures that ambiguous
surfaces are a subclass of the quadrics known as rectangular quadrics. In this section
it is shown that ambiguous surfaces are rectangular. Some of the properties of
rectangular quadrics are obtained, with particular emphasis on the rigid involutions
of rectangular quadrics.

Theorem 5.1. The intersection of an ambiguous surface with the plane at infinity
contains three points such that one of these points is not on the absolute conic, and such
that the other two points are the points of contact of the tangents drawn from the first point
to the absolute conic. The point not on the absolute conic is real. The other two points are
complex conjugate.

Proof. Let i be an ambiguous surface, let s,, be the conic ¢ N I, and let cartesian
coordinates be chosen such that ¥ is given by an equation of the form (7). It is shown
in §2.1 that s, consists of points x in I1  satisfying the equation

(Uxxx):b=0, (23)

where U is an orthogonal matrix. Let n be the axis of U, and let i,, j, be the points
of contact of the tangents drawn from n to the absolute conic £, as shown in figure
8. The points n, i,, j, are the three points referred to in the statement of the theorem.
Each point is in s, because, by theorem 3.2, n, i,, j, are eigenvectors of U, and thus
satisfy the equations L L.

Unxn=Ui,xi, =Uj,xj, =0. (24)
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Yallo

Figure 8. Rectangular quadrics.

The point n has real coordinates, and i,, j, are complex conjugate because U is an
orthogonal matrix with real entries. O

Theorem 5.1 leads to the following definitions.

Definition 5.1. A principal point of a quadric is a real point contained in the
intersection of the quadric with the plane at infinity such that the quadric contains
the two points of contact of the tangents drawn from the principal point to the
absolute conic.

Definition 5.2. A real quadric is rectangular if and only if (i) it contains a principal
point; and (ii) the quadric is not tangent to the absolute conic.

It is a consequence of definition 5.2 that a rectangular quadric intersects the
absolute conic at four distinct points.

It is specified in definitions 5.1 and 5.2 that the principal point of a rectangular
quadric are real, since this is the case of most relevance to the study of ambiguity.
However, several of the properties of rectangular quadrics obtained below hold even
if the principal points of a rectangular quadric are allowed to have complex
coordinates.

It follows from theorem 5.1 and definition 5.2 that ambiguous surfaces are
rectangular quadrics. Although the proof of theorem 5.1 involves choosing cartesian
coordinates, the definition of a principal point, and hence also the definition of a
rectangular quadric, is geometric, and does not depend on the choice of a particular
coordinate system, provided the sets of real points and complex points are
unchanged.

5.1. Properties of rectangular quadrics

Theorem 5.2. A real rectangular quadric has two principal points.

Proof. Let i be a real rectangular quadric with a principal point n and let i,, j, be
the points of contact of the tangents drawn from n to the absolute conic Q, as
illustrated in figure 9. It follows from definition 5.1 that i,, j, are contained in the
conic s, =y NIl

Let i, j,, be the points of s, N €2 distinet from i,, j,, and let m be the pole of
(i, Jmy> With respect to . The point m is real because i,,, j,, are complex conjugate.
To prove the theorem it is sufficient to show that m is contained in s.

Let 7 be the orthogonal involution of IT with vertex p, at the intersection of the
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Figure 9. Illustration of theorem 5.2.

two lines <i,, i, and {j,.j,,>. Then 7i,, =i, and 7j, = j,,. Let ¢, be the line of fixed
points of 7. Then 7(s ) N s, contains i,, j,, i,,,J,, and the points of g, N s.,. A conic has
only five degrees of freedom, thus 7(s) = s. It follows that m = 7n is a point of s,.
Thus ¥ has two principal points, as required. |

Theorem 5.3. The tangent planes to a rectangular quadric at the two principal points
intersect in a line orthogonal to both principal points of the quadric.

Proof. Let i be a rectangular quadric with principal points m, n, let s, be the conic
Y NIl and let g be the line {m,n). Let the line formed by the intersection of the
tangent planes to i at m, n meet I1, at p. Then it is required to show that p is
orthogonal to m, n, or equivalently, that p is the pole of g with respect to 2.

Let 7 be the rigid involution of /7, with line of fixed points g. Then 7(s,) N s,
contains the six points {m,i,,,j,,n,i,,j,}, thus 7(s,) = s,. It follows from the proof
of theorem 4.7 that the vertex of 7 is p. The involution 7 leaves £ invariant, thus the
vertex of 7 is also the pole of {m, n) with respect to . It follows that p is orthogonal
to m and n. O

5.2. Characterizations of rectangular quadrics

Several useful characterizations of rectangular quadrics are obtained under the
assumption that cartesian coordinates have been chosen. Additional results are given
by Horn (1990) and Negahdaripour (1990).

Theorem 5.4. Let cartesian coordinates be chosen in P3. Then a quadric is rectangular
if and only if it intersects the plane at infinity in a conic with an equation x*M,,, x =

0, where M,,=m@n+n®m)—m-nl (25)
and m, n are real points of 11 .

Proof. Let i be a rectangular quadric, let s, be the conic yr N 1T, and let m, n be
the principal points of ir. It follows from theorem 5.1 and the equation x-x = 0 for
the absolute conic 2 that s, contains distinet points m, i,,, j,, and n, i, j,, such that
m, n are real, and such that

m-i, =mj, =i, by, =JjuJn =0, (26)

ni, =nj, =i, i, =j,J, =0 (27)

Let s be the conic of 17, defined by x™M,,, x = 0. It follows from (25), (26) and (27)
that the six points m, i,,, j,., n, i,, j, belong to both s and s, thus s = s.

[\V]
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Conversely, let a quadric, i, intersect IT, in a conic s, of the form x™M,,, x = 0.
It follows that the equation for s is (x m)(x-n)—(m-n)(x-x) = 0. The conic s
contains six points m, i,,, j,,, 1, i, j, satisfying (26) and (27). Hence m, n are principal
points of . O

Theorem 5.5. Let cartesian coordinates be chosen in P2. Then a quadric is rectangular
if and only if it intersects the plane at infinity in a conic with an equation x*Mx = 0,
where M is a real symmetric matriz such that two of the eigenvalues of M have opposite
signs, and sum to give the third eigenvalue of M.

Proof. Let i be a non-singular quadric, and let s, be the conic N I1 . It follows
from theorem 5.4 that i is rectangular if and only if there exist real points m, n in
II, such that s, has an equation x™M,,, x = 0. It suffices to show that a real
symmetric matrix M has the form M,,, for real points m, n in I1_ if and only if two
of the eigenvalues of M have opposite signs, and sum to give the third eigenvalue
of M.

It follows from (25) that the (unnormalized) eigenvectors of M,,, are

In|m+|ml|n, |n|m—|m|n, mxn,
where || -|| is the euclidean norm of a vector. The corresponding eigenvalues are
s(Iml inl—m-n),  —3(Iml|l |nl|+m-n), —m-n. (28)

The first eigenvalue in (28) is positive, the second eigenvalue is negative, and the
third eigenvalue is the sum of the first two eigenvalues.

Conversely, let M be a real symmetric matrix with eigenvalues A,, A,, A, such that
Ay +A, =24, and such that A, <0< A,. Let e, e, e, be the corresponding
eigenvectors, scaled such that e, e, = e, e, = e, e,. Define vectors m, n by

m= —ae, + fe,, n=ae —fe,, (29)
where a = 4/A,, f =4/ —A,. 1t follows from (25) and (29) that
M, =—2e,Qe—2e,Qe,+ (A, +A,)1,

thus M, e, = A,e;. The matrices M,,, and M have the same eigenvectors and
eigenvalues, thus M,,, = M. The proof is completed by noting that m, n, as defined
in (29), are both real. |

Corollary. If one of the eigenvalues of M is the sum of the other two eigenvalues of M,
and if in addition  has a real generator then y is rectangular. The existence of a real
generator ensures that the eigenvalues of M do not all have the same sign. It follows that
two eigenvalues with different signs sum to give the third eigenvalue.

5.3. Rigid involutions of rectangular quadrics

It is shown that a rectangular quadric is invariant under exactly three non-trivial
rigid skew involutions, such that two of the involutions interchange the principal
points of the rectangular quadric, and the third involution fixes the principal points.
This result is applied in §7.1 to show that each ambiguous surface is invariant under
a rigid involution that interchanges the two possible positions of the optical centre
of the camera from which the second image is obtained.

The rigid skew involutions are defined as follows. Let m, n be the principal points
of a rectangular quadric i, and let [, be the line formed by the intersection of the
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Figure 10. The geometry of rectangular quadrics.

tangent planes to ¢ at m and n. Define 7, to be the non-trivial involution of P? with
two lines of fixed points [, and {m,n). It follows from theorem 5.3 that I, n 11 is
orthogonal to every point of {m,n), thus 7, is rigid.

Let p,, p, be the fixed points of the unique rigid involution of the line {m,n) that
interchanges m and n, and let d be the mid-point of the line segment defined by the
two intersections of [, with y. Define 7, to be the rigid skew involution of P? with a
line of fixed points <{d, p,»>, and define 7, to be the rigid skew involution of P? with
a line of fixed points {d,p,).

It follows from the definitions of 7, 7,, 7,, that 7,m = m, 7, n = n, and 7,m = n for
i = 1,2. It is shown in the next three theorems that 7, 7,, 7, are precisely the non-
trivial rigid skew involutions of .

Theorem 5.6. 4 non-singular rectangular quadric is invariant under three non-trivial
rigid skew involutions.

Proof. It is shown that a non-singular rectangular quadric ¥ is invariant under the
three rigid skew involutions 7, 7,, 7,. Let m, n be the principal points of ¢, and let
l, be the line formed by the intersection of the tangent planes to ¢ at m and n. Let
g.(m), g,(m) be the generators of ¢ through m, as shown in figure 10. The tangent
plane to ¥ at m contains g,(m), thus g,(m) intersects [,. The line g,(m) contains two
fixed points of 7, namely m and g,(m) N, thus g,(m) is invariant under 7,. Hence
7,(¢) contains g,(m). Similarly, 7,(j) contains g,(m), g,(n) and g,(n).

The generators g,(m), g;,(n) meet [, at the points of I, Nyr. It follows from the
definitions of 7, and 7, that the 7, interchange the two points of [, N, thus the 7,
permute the four lines g,(m), g;(n) among themselves. It follows that the 7,(y) contain
g9:(m), g,(m) and g,(n), g,(n).

Let s, = ¥ 0 I1,. Each of the three intersections 7,(s,,) N S, 71(850) N 8o, Ta(8e) N Sy
contains the six points {m, i,,, j,., 1, i,,, j,,}. Two distinct conics intersect at four points
only, thus the conics in each of the three intersections are not distinct. In other
words, 7,(8) = Sy T1(850) = 8oy Ta(Ses) = S0

It has been shown that each of the three intersections 7,(¥) Ny, 7,(4) Ny,
7,(¥) N Y contains a (split) space curve of degree six, namely the union of s, with the
four generators g,(m), g,(n). The intersection of two distinct quadrics is a space curve
of degree four rather than degree six, thus the quadrics in each of the pairs {r,(}),
U, AT (), ¥, {7o(¥), ¥} are not distinet. In other words 7,(¢) = ¢, 7,(¥) =¥,
() =¥ (]
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The generators g,(m), g;(n) in the proof of theorem 5.6 are referred to by Hofmann
(1950) as the main generators (Haupterzeugenden) of . Any two generators g, h of
i such that 7,(g) = & are known as adjoint generators (Erzeugenden adjungiert). The
main generators of ¥ are thus self-adjoint generators. The involution 7, first
appeared in the photogrammetric literature. Further information and references are
given by Hofmann (1950).

Theorem 5.7. A non-trivial skew involution of P? leaving invariant a non-singular
quadric also leaves invariant the two families of generators on the quadric.

Proof. Let i be a non-singular quadric invariant under a non-trivial skew
involution 7, and let &, &, be the two families of generators of . Two generators,
g and A, of ¥ intersect if and only if the generators 7(g) and 7(%) intersect. It follows
that g, b are in the same family of generators if and only if 7(g), 7(k) are in the same
family of generators, thus either 7 interchanges &, and %,, or 7 leaves &, and %,
invariant.

Let ¢ contain a line g, of fixed points of 7, and suppose, after relabelling if
necessary, that ¢_is in &,. Let a generator & of &, intersect ¢, at p. Then 7(h) also
intersects ¢, at p, thus A = 7(h). It follows that &, is invariant under 7, and thus &,
is also invariant under 7.

Next, suppose that i does not contain a line of fixed points of 7. Choose five
generators ¢; of ¢ from Z,. If 7 interchanges &, and &, then the points 7(g,;) N g; are
fixed points of 7 contained in . The fixed points of 7 form two lines in [® thus at least
three of the 7(g;,) N g, are on the same line of fixed points of 7. It follows that v
contains a line of fixed points of 7, contrary to hypothesis. The involution 7 thus does
not interchange &%, and %,. Hence 7 leaves &, and %, invariant. 0

Theorem 5.8. A non-singular rectangular quadric is invariant under exactly three
non-trivial rigid skew involutions.

Proof. It has been shown in theorem 5.6 that a non-singular rectangular quadric,
¥, is invariant under three non-trivial rigid skew involutions, 7, 7, and 7,. It is thus
sufficient to show that if ¢ is invariant under a non-trivial rigid skew involution 7,
then 7 is equal to one of 7, 7, 7,.

Let m, n be the principal directions of . The absolute conic £ and the conic
S, = ¥ NII are invariant under 7, thus either m, n are fixed points of 7 or m, n are
interchanged by 7. It follows from theorems 4.8 and 4.9 that the restriction of 7 to
I, is equal to the restriction of one of 7,, 7,, 7, to II,,. Thus, by forming the
appropriate product 77, 77, 77,, a euclidean transformation o is obtained which
fixes every point of I and which leaves ¢ invariant.

It follows from theorem 5.7 that the two skew involutions comprising w each leave
the two families &, and %, of generators of ¢ invariant, thus v also leaves &, and
Z, invariant. Each point of s lies on a single generator of %, and the points of s,
are fixed points of w, thus each individual generator of &, is invariant under w.
Similarly, each generator of &, is invariant under w. Each point p of ¢ is at the
intersection of two generators g,(p), g,(p) of ¢ belonging to #, and #, respectively,
thus all the points of ¢ are fixed by w.

Let a be any point of P2, and let k be a line through a. Then k contains three fixed
points of w, namely, k N 11, and the two points of k£ N . It follows that k is invariant
under w. The restriction of w to k is the identity, thus wa = a. It follows that o is the
identity. Thus 7 is equal to one of 7, 7,, 7,, as required. O
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The projective geometry of ambiguous surfaces 27

6. Horopter curves

Up to this point the discussion of ambiguity has centred on the ambiguous
surfaces, in line with much of the current computer vision work on reconstruction.
There is, however, a second approach to ambiguity based on the properties of certain
space curves of degree three known as horopter curves. Horopter curves were first
discovered by Helmholtz (1925). They appear in the earlier projective geometric
treatment of ambiguity (Wunderlich 1942), but with the exception of Buchanan’s
work (1987), they have not so far been used in computer vision. The first theorem of
this section shows that the twisted cubic contained in the intersection of
complementary ambiguous surfaces has a key property characterizing horopter
curves.

Theorem 6.1. The twisted cubic contarned tn the intersection of complementary
ambiguous surfaces contains three points such that one of these points is not on the
absolute conic and such that the other two points are the points of contact of the tangents
drawn from the first point to the absolute conic. The first point is real and the second two
points are complex conjugate.

Proof. The result follows on applying theorem 5.1 to a pair ¥, ¢ of complementary
ambiguous surfaces. The points n, i, j,, as given in theorem 5.1, are contained in
¥ N ¢. They are not on the common generator of ¢, ¢, thus n, i, j, are contained in
the twisted cubic common to ¥ and ¢. O

The twisted cubics contained in the intersection of complementary ambiguous
surfaces are examples of horopter curves.

6.1. Star generation of horopter curves

Horopter curves arise in theorem 6.1 as part of the intersection of complementary
ambiguous surfaces. It is, however, convenient to base the definition of horopter
curves on the star generation of twisted cubics (Semple & Kneebone 1952), rather
than on theorem 6.1.

Definition 6.1. Let two stars of lines with distinct real centres be given in P3,
together with a real orthogonal collineation between the two stars of lines. Then the
locus of the intersections of corresponding pairs of lines is defined to be a horopter
curve.

It follows from definition 6.1 and the construction of ambiguous surfaces described
in §2.3 that the twisted cubic contained in the intersection of complementary
ambiguous surfaces is a horopter curve.

The equations defining a horopter curve are readily obtained from definition 6.1.
Let a, b be the two centres of the stars of lines, and let w be the orthogonal
collineation from the lines through a to the lines through b. It follows from definition
6.1 that a point x is on the horopter curve if and only if the vectors w(x —a) and x —b
are parallel. In cartesian coordinates, x is on the horopter curve if and only if

o(x—a)x (x—b) = 0. (30)

The horopter curve ¢ given by (30) intersects 11, at the points x which are solutions
of wx x x = 0. The points of ¢ N IT, are precisely the eigenvectors n, i,, j, of w, as
required by theorem 6.1. The following theorem shows that the converse to theorem
6.1 is also true.
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Theorem 6.2. A non-singular real twisted cubic is a horopter curve if and only if it
intersects the plane at infinity at three points such that one of these points is real, and such
that the other two points are the points of contact of the two tangents drawn from the first
point to the absolute conic.

Proof. It is shown in the discussion following (30) that a non-singular horopter
curve intersects II_, at three points n, i,, j, satisfying the requirements of this
theorem. Conversely, let ¢ be a non-singular real twisted cubic intersecting IT at n,
i,, jo- Then n is real and i,, j, are complex conjugate. It follows from the general
properties of twisted cubics that there exists a unique involution 7 of ¢ (and hence of
P?) such that 7n = n and 7i, = j,. The plane IT_, = {n,i,,j, is invariant under 7. It
follows from theorem 4.11 that 7 is rigid. Let a be a real point of ¢ such that
Ta # a,and let b = 7a. It follows from the star generation of twisted cubics that there
exists a collineation w of IT such that a point x is on ¢ if and only if there is a point
r of II , depending on x, such that

x ={a,ryn<{b,wr). (31)

As x varies, the points r of (31) vary on the conic s formed by projecting ¢ from a
to I1,.

The collineation w is real because c is real. To see this, let ¥ be the complex
conjugate of x. Complex conjugation of (31) yields

X =<a,Fyn<{b,wr)

The point X is on ¢, thus w¥ = @F. It follows that v = @ as required.
To prove the theorem it suffices to show that w is an orthogonal collineation. The
application of 7 to (31) yields
7x = <{b,7r) N<a,T0r). (32)

The point 7x is on ¢, because ¢ is invariant under 7. A comparison of (31) and (32)
yields wrwr = 7r for all points r on s. It follows that (7w)? is the identity on s, thus
(Tw)? is the identity on the whole of IT . Hence 7w is an involution of IT . It follows
from (31) that n, i, j, are fixed points of w, thus 7on = n and 1wi, =j,. It follows
from theorem 4.11 that 7w is orthogonal. Hence w is an orthogonal collineation. []

Corollary. A horopter curve is invariant under a non-trivial rigid involution.

An explicit construction of the non-trivial rigid involution appearing in the proof
of theorem 6.2 is given in the next section.

6.2. Rigid involutions of horopter curves

Rigid involutions of horopter curves and ambiguous surfaces are the basis of the
results on ambiguity obtained in §7. It has been shown in the corollary to theorem
6.2 that a horopter curve is invariant under a non-trivial rigid involution. This rigid
involution is constructed explicitly in the following theorem.

Theorem 6.3. A horopter curve is invariant under a non-trivial rigid skew involution.

Proof. Let ¢ be a horopter curve generated by a real orthogonal collineation w from
the star of lines with centre a to the star of lines with centre b, where a, b are distinct
real points of P?. Let w be described by its action on IT . Let n be the axis of w, let
p be the intersection of {a, b) with IT , and let d be the midpoint of the line segment
la,b].
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Figure 11. The rigid involution of a horopter curve.

The points of ¢ are precisely those points x satisfying (31). It follows from theorem
4.12 that w = 7,7, where 7, and 7, are rigid involutions of I1_ with vertices n, and
n, both orthogonal to n. Set n, = nx p, and let 7 be the rigid skew involution of P?
with a line of fixed points passing through d with direction n,. It follows from the
definition of 7 that 7a = b, and that 7, is the restriction of 7 to II . The application
of 7 to (31) yields

x =<b,7,ryn<a,7,0r)
= <b771r> n <a,72r>
=<a,s) N<b,ws),

where § = 7, r. It follows that 7x is a point of c. O

The rigid involution 7 constructed in the proof of theorem 6.3 is illustrated in figure
11. The lines g, and h, are the two skew lines of fixed points of 7, labelled such that
g, is contained in 71 . There are exactly two fixed points of 7 on c¢. One of these points
is the real point n of ¢ N I1 . The other point is known as the centre ¢ of ¢. The point
n lies on ¢, and c lies on k,. The tangent to ¢ at n is known as the real asymptote of
c. The tangents to ¢ at n and ¢ are both invariant under 7, thus each tangent is a
common transversal of g, and ,.

Theorem 6.4. A horopter curve is invariant under exactly one non-trivial rigid
tnvolution.

Proof. 1t suffices to show that the rigid involution 7 of the horopter curve ¢
constructed in theorem 6.2 is unique. Let ¢ be any non-trivial rigid involution of ¢,
and let n, i,,, j, be the three points of ¢ N I1 . Both ¢ and 11 are invariant under o,
thus the set {n, i,,j,} is permuted by ¢. In addition, on = n because n is the only point
of ¢ N 11, not contained in £.

It follows from §4.4 that o is uniquely determined by its action on {n,i,,j,}. If
oi, = i,, 0j, =J, then o is the identity, contrary to hypothesis. The only remaining
possibility is oi, = j,. In this case o and 7 have the same effect on {n,i,,j,}, thus

o=T. I__'l

It is apparent from the proof of theorem 6.2 that there is a close connection
between the star generation of a horopter curve by an orthogonal collineation and
the unique non-trivial rigid involution of the horopter curve. The next theorem
develops this connection further.
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Theorem 6.5. T'wo distinct points of a horopter curve are centres of stars of lines related
by an orthogonal collineation such that corresponding lines intersect on the horopter curve
if and only if the unique non-trivial rigid involution of the horopter curve interchanges
the two points.

Proof. Let ¢ be a horopter curve invariant under a non-trivial rigid involution 7,
and let a, b be distinet points of ¢. It follows from theorems 6.2 and 6.4 that if a, b
are centres of two stars of lines related by an orthogonal collineation that generates
¢ then Ta = b. To prove the converse, suppose that ra = b. Let w be the collineation
of 11, such that if x is any point of ¢ then there exists a point r of 17, depending on
x, such that (31) holds. It is sufficient to prove that » is orthogonal. Let 7, be the
restriction of 7 to I7,. Then the application of 7 to (31) yields

x =<b,7,r)N<a,1,wr). (33)
By hypothesis, 7x is a point of ¢. A comparison of equations (31) and (33) yields
wt, wr = 7, r for all points r on the projection s of ¢ from a to I1. The curve s is a
non-singular conic, thus (7, w)? is the identity, and hence 7, w is an involution. Let
enll, ={n,i,j,} where i, j, are on the absolute conic 2. The involution 7, w fixes
n and interchanges i, and j,, thus by theorem 4.11, 7, @ is orthogonal. Hence v is an
orthogonal collineation. O

An alternative characterization of the centre of a horopter curve is now obtained.

Theorem 6.6. A horopter curve contains a unique real point furthest from the real
asymptotic line. This point is fixed by the unique non-trivial rigid involution of the
horopter curve.

Proof. Let ¢ be a horopter curve invariant under a non-trivial rigid involution 7,
and let n, i,, j, be the three intersections of ¢ with I7_, such that n is not on the
absolute conic £2. Let [ be the tangent to ¢ at n (/ is the real asymptotic line of ¢), and
let ¢, be the circular cylinder of radius d with axis /. The surface ¢, is a quadric
containing n, i,, j,, with a singularity at n. The line [ is invariant under 7, thus ¢,
is invariant under 7. It follows that ¢, N ¢ is invariant under 7.

It is shown that for a general value of d, ¢, N ¢ contains five distinct points. Let »
be the value of d for which ¢, contains a. Then ¢, also contains b because ¢, is
invariant under 7, thus c¢N¢, o {n,i, j,,a, b}. It follows that ¢,Nc contains in
general at least five distinct points. The space curve ¢ is of degree three and ¢, is of
degree two thus ¢, Nc contains 6 =3x2 points, counted with the correct
multiplicities (Walker 1962). The point n is counted at least twice in ¢, N ¢ because
¢, has a singularity at n. Thus ¢, N ¢ contains in general at most five distinet points.
In consequence, ¢, N ¢ contains in general exactly five distinct points.

Let ¢yNe=1{ni,.j,, Py q,} Then 7p, = q, because 7 has exactly two fixed points
on ¢ and in general neither of these fixed points is equal to p, or gq,. If d is sufficiently
large then p,, g, are complex conjugate. There also exist values of d for which p, and
q, are both real, for example d = r. Let d” be the largest value of d for which p,, g,
are real. Then c is tangent to ¢, at p,, thus p, and g, coincide at a point ¢, and
7¢ = c. It follows from the definition of ¢, that ¢ is the unique point of ¢ furthest
from . O

Theorem 6.6 is the basis of the following definition of the centre of a horopter
curve.

Definition 6.2. The centre of a horopter curve is the unique point of the curve
furthest from the real asymptote.
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The centre of a horopter curve should not be confused with the optical centre of
a camera or with the centre of a star of lines.
The next theorem is useful for the classification of horopter curves.

Theorem 6.7. Let two horopter curves be given such that they are invariant under the
same non-trivial rigid tnvolution, they have the same centre, and they have the same
tntersections with the plane at infinity. If either (i) the two curves have at least one further
point in common ; or (i) the two curves have the same real asymptotic line and the same
tangent line at the common centre, then the two curves are identical.

Proof. Let ¢;, ¢, be two horopter curves invariant under the same non-trivial
rigid involution 7, such that ¢, NIl =c, NIl , = {n,i,.j,}, and such that c,, ¢, have
the same centre ¢. To prove (i), let @ be a point common to ¢, and c,, but distinct from
n, i, j, and c. Let w,, v, be collineations of II that define ¢, and ¢, respectively as
the loci of the intersections of corresponding lines from stars of lines centred at @ and
7a. The horopter curves ¢, and ¢, intersect at n, i,, j, thus

W N=w,n="n, wi,=W0i,=1, Of,=w0yj,=J, (34)
Let r =<{a,e> NI, and let s = {ra,c) N I1,. The centre c is on both ¢; and ¢, thus
W F =W, =S8. (35)

It follows from (34) and (35) that w, and w, take the same values at four points of
IT_, no three of which are collinear, thus w, = w,, and hence ¢, = ¢,.

To prove (ii), let ¢; and ¢, have the same real asymptotic line / and the same
tangent line k£ at the common centre c. Let w,, w, be collineations from the star of
lines centred at ¢ to the star of lines centred at n that define ¢, and ¢, respectively
as loci of the intersections of corresponding lines. Then

W, {e, B, = wye, i) = {n, i),
(€. Jn) = 05C.J > = {Mofi)-
It follows from that star generation of twisted cubics that
w k=wk={c,n), w,le,n)=w,e,n)=1

The collineations w, and w, agree at four points in their common domain of definition,
thus @, = w,, and hence ¢, = ¢,. O

6.3. Horopter curves on rectangular quadrics

Each rectangular quadric contains numerous horopter curves. Among these, the
horopter curves of greatest interest in reconstruction are those invariant under the
unique non-trivial rigid involution of the rectangular quadric that fixes the principal
points of the rectangular quadric. These horopter curves are now described.

Let m, n be the principal points of a non-singular rectangular quadric ¥, and let 7,
be the unique non-trivial rigid skew involution of ¥ that fixes m and n. It follows
from theorem 6.2 that any horopter curve in ¥ contains either m or n. Let &, #, be
the two families of generators of y. Define J#,(n) to be the set of horopter curves
contained in ¥ and invariant under 7,, that contain n, and that meet each generator
of Z, twice. The sets H#,(n), #,(m) are defined mutatis mutandis. The four sets H#;(m),
H,(n) are disjoint, because a general horopter curve of i contains just one of the
points m, n, and because each horopter curve in ¥ is either a (1, 2) curve or a (2, 1)
curve.
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AN

C2 ¢,

Figure 12. Horopter curves on a rectangular quadric.

Theorem 6.8. The horopter curves contained in a non-singular rectangular quadric
and invariant under the unique rigid skew involution of the quadric that fixes the two
principal points of the quadric form four disjoint one-parameter families.

Proof. The notation introduced immediately before the statement of this theorem
is used. Let [, be the line formed by the intersection of the tangent planes to the
quadric ¥ at m and n, and let ¢,, ¢, be the points at which /, intersects r. The
generators g,(n), g,(n) meet [,. After relabelling ¢, and ¢, if necessary, it can be
assumed that

gi(n) =<n, ¢y, gy(n) =<n,c,)
as illustrated in figure 12. It follows from the definition of 7, given in §5.3, that ¢,
and ¢, are the only fixed points of 7, contained in y\I7,, thus any horopter curve
contained in ¥ and invariant under 7, has a centre either at ¢, or at c,.

It is shown that all horopter curves c in ), (n) have their centres at ¢,. It follows
from the definition of J,(n) that ¢ meets g,(n) twice. Let g be the point of ¢ N g,(n)
distinct from n. Then {n, ¢} is invariant under 7,. The point n is fixed by 7, thus g
is fixed by 7,. It follows that q =c¢,, because n, ¢, are the only fixed points
of 7, in g,(n). Thus ¢, is the centre of c.

Let p be an arbitrary point of i, and let ¢ meet g,(p) at a. It follows from theorem
6.7 that c¢ is the only horopter curve in S, (n) that contains a. It remains to show that
each point a of g,(p) lies on a horopter curve in 5, (n). Let ¢ be the unique cone with
vertex n containing the points S = {n,i,,j,, ¢, a, 7,a}. The set S is invariant under T,
and n is fixed by 7,, thus 7,(¢) = ¢. The intersection ¢ Ny contains a common
generator of ¢ and y, namely <{n,c,), thus

¢pny =<nc)Uc,

where ¢ is a twisted cubic meeting {n,¢,) twice. The curve ¢ is invariant under 7,
because ¢ and i are both invariant under 7,. The projection of ¢ from n is a conic,
because c lies in ¢. It follows that n is a point of ¢. The curve ¢ also contains 7, and
Jn» thus by theorem 6.2, ¢ is a horopter curve. Hence c¢ is in J,(n), as required.

It has thus been shown that 5 (n) is a one-parameter family of horopter curves
parametrized by g,(p). Similar arguments establish that 5,(n) and the 5#,(m) are also
one-parameter families of horopter curves. O
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6.4. Conjugacy classes of horopter curves

It is shown in §3 that if ¢, and ¢, are any two non-singular twisted cubies then there
exists a collineation w of P? such that w(c,) = ¢,. As a consequence, the projective
geometric properties of ¢, and ¢, are the same. If ¢, and ¢, are non-singular horopter
curves then it is natural to ask if there exists a euclidean transformation w of P? such
that w(c,) = ¢,. In contrast with the more general case, an appropriate euclidean
transformation does not always exist. Instead, there exists a one-parameter family
of horopter curves ¢, such that a given ¢, cannot be transformed to any other member
of the family by a euclidean transformation. The family c, is complete, in that an
arbitrary non-singular horopter curve c is of the form ¢ = w(c,), for some choice of w
and a. A suitable family c, is obtained in this section and shown to have the required
properties. It is convenient to make the following definition.

Definition 6.3. Two horopter curves, ¢, and ¢, are defined to be conjugate if there
exists a euclidean transformation w of P? such that w(c,) = ¢,. Conjugacy between
horopter curves is indicated by ¢, ~ c,.

It follows from definition 6.3 that conjugacy of horopter curves is an equivalence
relation: if ¢,, ¢,, ¢, are three horopter curves, then (i) ¢, ~ ¢;; (ii) if ¢; ~ ¢,, then
¢y ~ ¢,; and (iii) if ¢; ~ ¢, and ¢, ~ ¢,, then ¢, ~ ¢;. Consequently, the set of horopter
curves is partitioned into disjoint equivalence classes, such that the horopter curves
in a given class are conjugate to one another, and such that two horopter curves from
different classes are not conjugate.

The following theorem is a necessary preliminary.

Theorem 6.9. Let i be a non-singular rectangular quadric with a principal point n.
Then the horopter curves in H#,(n) and H,(n) all have the same real asymptotic line.

Proof. Let | be the real asymptotic line of a horopter curve ¢ in J#,(n) or #,(n).
Then [ is in the tangent plane /I to y at n. The line [/ is invariant under the rigid skew
involution 7, of i, thus [ is a common transversal of the lines %, g, of fixed points
of 7. Let h, be the line of fixed points of 7, not contained in /1. Then = {n,h, 0 II},
thus [ is independent of the choice of c. O

Theorem 6.10. The horopter curves in a single family H,(m) or H,(n) are pairwise
non-conjugate.

Proof. Let ¢,, ¢, be distinet horopter curves in #,(n), and let w be a euclidean
transformation such that w(c,) = ¢,. 1t is thus required to prove that ¢, = c,.

Let k., g, be the two skew lines of fixed points of 7, chosen such that g, is contained
in IT,,. The collineation w™'7, w is a non-trivial rigid skew involution of ¢, thus, by
theorem 6.4, o '7,w = 7,. Let p be any point of ,. Then w™'7, wp = p, thus wp is a
fixed point of 7,. It follows that either w(h,) =k, or w(h,) =g,. As Il is invariant
under o, w(h,) = h,. Similarly, w(g,) = g,. It follows that the point A _n I1 is fixed by
w. The point n is also fixed by w because n is the only point of

c1 n Hoo = 02 n Hoo = {”»in,jn}

not contained in 2. On composing w with 7, if necessary, it can be assumed that i,
and j, are fixed by w. In consequence, the four points {h, NIl , n,i,,j,} are fixed by
w, thus the restriction of w to I1 is the identity.

The common centre ¢ of ¢, and ¢, is the unique point at which ¢, and ¢, meet 4,.
The line %, is invariant under w, thus wc = c. It follows from theorem 6.9 that ¢, and
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¢, have the same real asymptotic line [. The line [ is invariant under w, thus the
intersection [ N A, is a fixed point of w. The line A, thus contains three fixed points of
w. Hence, the restriction of w to A, is the identity. It follows that w is the identity.

O

It follows from theorem 6.10 that one-parameter families of pairwise non-
conjugate horopter curves exist, namely, J#;(m), #,(n). It remains only to show that
an arbitrary horopter curve is conjugate to a curve in J,(m) or #;(n).

Theorem 6.11. 4 non-singular horopter curve is conjugate to one of the horopter curves
contained in the fixed non-singular quadric Y and invariant under 7.

Proof. 1t is shown that an arbitrary non-singular horopter curve ¢ is conjugate to
a horopter curve in J#,(n). 1t follows from the proof of theorem 6.8 that the horopter
curves in J#(n) have a common centre c,, and it follows from theorem 6.9 that the
horopter curves in J,(n) have a common real asymptotic line /,,.

Let ¢ be invariant under the rigid skew involution 7,, and let g,, £, be the lines of
fixed points of 7,, labelled such that ¢, is contained in I7 . Let ¢ be the centre of ¢,
and let [ be the real asymptotic line of ¢. Let [, be the axis of i, and let [, be the
common real asymptotic line of the horopter curves in 5#,(n). Then there exists a
euclidean transformation w such that

w(g-r) = <m7n>’ w(hr) = luw w(l) = ln’ a)(c) = Cl‘

Let ¢ = w(c). Then ¢’ is invariant under the skew involution wr, 0™ =17,.

1t remains to show that ¢’ is contained in J,(n). Let IT be the tangent plane to ¥
at ¢;, and let k& be the tangent line of ¢’ at ¢,. The line £ is invariant under 7,, thus
k is contained in /1. Each line tangent to i at ¢, is also the tangent line to a horopter
curve in J#,(n). It follows that there exists a curve ¢” in J,(n) with tangent line k at
c,. It follows from theorem 6.7 that ¢’ = ¢”, thus ¢ is conjugate to a horopter curve

in J,(n). O

6.5. Examples of twisted cubics and horopter curves

Some explicit parametrizations of twisted cubics and horopter curves are obtained.
The twisted cubics are required to be invariant under the non-trivial rigid skew
involution 7 defined by

100 0
001 0
o 1t o o
00 0 —1

It is also required that the twisted cubics pass through fixed points ¢, n of 7 given by
c=(0,0,0,1)", n=(1,0,0,0)".
Let ¢ be a twisted cubic with a parametrization ¢~ (f(¢), g(t), h(¢), k(t)) where
) = fotfit+ [+ 502
g(t) = got+ g, t+ 9.+, 1,
ht) = ho+ht+hyt* +hyt3,
k(t) = ko+kyt+kyt> + kg £,

The curve ¢ can be parametrized by ¢ in many different ways. To fix a unique
parametrization of ¢, it is required that the point ¢ corresponds to ¢ = 0, the point n

(36)
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The projective geometry of ambiguous surfaces 35

corresponds to { = co, and that one of the intersections of ¢ with I corresponds to
t = i. These requirements ensure that the values of { at the remaining points of ¢ are
uniquely determined.

With the above choice of parametrization, the restriction of 7 to ¢ is given by
t——t, because this is the only involution of ¢ with fixed points att = 0 and ¢ = 0. The
three points of ¢ N I, are thus { = 0, ¢t =i, { = —i. It should be noted that the points
t = +ineed not be the points of contact of the tangents drawn from n to the absolute
conic.

As a result of the above restrictions on ¢, and the choice of parametrization of ¢,
the equations of (36) reduce to

) =fit+f88, g(t) = glt+92t2’}

h(t) = g, t—got?, k() = ko(1+1¢3). (37)

It follows from (37) that the points ¢ = +1i at which ¢ meets I1 are given by

(l(fl _f3)’ lgl — G2 lgl +g2’ O)T’
(=i(fi—=fs), —ig1— s —ig1 +¢5,0)".

In general, neither of these points is equal to the points of contact i,, j, of the
tangents drawn from n to £, thus the twisted cubics of (37) are not, in general,
horopter curves.

Let ¢ now be a horopter curve, and let ¢ = i correspond to the point i, = (0, 1,1, 0)".
It follows that . . . .

(i(fi —/f5) 191 —Ga» ig, + 92, 0)' = (0, 1,1,0)7,

thus f, = f; and ¢, = —g¢,. The equations of (37) reduce to
h(t) = g,(t+1%),  k(t) = ko(1+12).

The coefficients f,, g, k, of (38) can be further restricted by specifying the tangent
line to ¢ at n. For example, if this line is required to be <{n, (0, —1,1,1)T>, then

ky = g,.

(38)

7. Ambiguous surfaces

The results obtained in §5 and §6 are applied to ambiguous surfaces. The notation
used in §2 is recalled. The origin o is taken as the optical centre for the first image
and a, b are taken as the two possible optical centres for the second image. The
ambiguous surface ¥ is the result of reconstruction when the second camera has its
optical centre at a, and the complementary ambiguous surface ¢ is the result of
reconstruction when the second camera has its optical centre at b. The surfaces i, ¢
each contain o, a, b. In addition, y contains <o, b), and ¢ contains {0, a). The main
new result of this section is a cubic polynomial constraint on ambiguous surfaces
obtained from 7.

7.1. Rigid involutions of ambiguous surfaces

The following theorem establishes a link between rigid involutions of ambiguous

surfaces and rigid involutions of horopter curves.

Theorem 7.1. The ambiguous surface complementary to a given non-singular
ambiguous surface can be chosen such that both the horopter curve contained in the
intersection of the two ambiguous surfaces and the given ambiguous surface are invariant
under the same non-trivial rigid involution.

Phil. Trans. R. Soc. Lond. A (1990)
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}

¥

Figure 13. Tllustration to theorem 7.1.

Proof. Let 3 be a non-singular ambiguous surface with equation
(Uxxx)-b=(Uaxx)b (39)
identical to (7). It follows from (39) that the optical centre b of the camera taking the
second image lies on a generator g of i passing through o. The position of b is not
uniquely determined, in that b can be moved on g, without changing . As b moves
on ¢, the ambiguous surface, ¢, complementary to ¢ and the horopter curve contained
in ¥ N ¢ both change.

Let b be chosen on g such that {a,b) meets II  at a point of {m,n), as shown in
figure 13. Let m, n be the principal points of i, and let ¢ be the horopter curve
contained in ¥ N ¢. It follows from theorem 6.3 that ¢ is invariant under a non-trivial
rigid skew involution 7. Let g, and h, be the skew lines of fixed points of 7, labelled
such that g, is contained in IT . It follows from the explicit construction of 7, given
in theorem 6.3, that ¢, contains both n and {a,b) N {m,n), thus g. = {m,n).

Let s, = ¥ N 11 . The intersection 7(s ) N s, contains the six points m, i,,,j,,., 1, i,,,
Jn, thus 7(s,,) = s,. It follows that 7(y) N ¢ contains a (split) curve of degree five
comprising the cubic space curve ¢ contained in ¥ N¢ and the conic s,. The
intersection of two distinct quadrics is a curve of degree four, thus 7() and  are not
distinct. In other words 7(y) = . O

Corollary. The rigid involution 7 is equal to the rigid involution 1, defined in §5.3,
because 7, is the unique non-trivial rigid skew involution of yr which fixes both m and n.

Theorem 7.1 can be proved algebraically, starting from (25) and (39). It is
sufficient to show that 7,axb = 0. A long calculation shows that
(Tpaxb) m=0,
(rpaxb)y n=0,
(ryaxb) - (mxn)=0.
The result then follows. The details are omitted.
The converse of theorem 7.1 is obtained as follows.

Theorem 7.2. With the notation of theorem 7.1, let o0, a, 7,4 be distinct points of the
non-singular rectangular quadric Y such that T, a is on a generator of Y passing through
0. Then v s an ambiguous surface such that o is the optical centre for the camera taking
the ﬁrst'image, and a, T, a are the two possible optical centres for the camera taking the
second tmage.

Phil. Trans. R. Soc. Lond. A (1990)
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The projective geometry of ambiguous surfaces 37

Proof. Let b =r1,a. It follows from the proof of theorem 6.8 that i contains a
unique horopter curve ¢ invariant under 7, and containing n and a, such that ¢
intersects the generator <o,b) exactly once. The curve ¢ contains b = 7,4, thus
c¢n<o,b) = b. It follows from theorem 6.5 that there exists an orthogonal collineation
o from the star of lines through a to the star of lines through b such that ¢ is the locus
of the intersections k N wk as k varies through the lines containing b.

Let 3" be the surface swept out by the lines I7 N w(I1) as I varies through the pencil
of planes containing w™'{o, b). It follows from the construction given in §2.2 that ¢’
is an ambiguous surface. The intersection, ¢ N {’, contains the horopter curve ¢, and
the line (o, b). In addition, ¥ N ¥’ contains a line A which meets ¢ twice, because this
is a general property of a twisted cubic contained in the intersection of two quadric
surfaces (Semple & Kneebone 1952). Now A # <0, b), because {o,b) meets ¢ only
once. It follows that i Ny’ contains a (split) space curve of degree five, namely
cU<o,b) Uh. Two distinct quadrics intersect in a space curve of degree four, thus i
and ¥ are not distinct. In other words, ¥ = . O

7.2. An expression for T,

An explicit algebraic expression is obtained for the rigid skew involution 7,
appearing in theorem 7.1. With the notation of theorem 7.1, let the principal points
of i be m, n, and let cartesian coordinates be chosen such that i has the equation

x™Mx+1-x =0, (40)

where x = [x,,x,,2,] is a point of R?, [ is a vector, and M is a real 3 x 3 symmetric
matrix of the form

M=im@n+n@m)—m-nl. 41)

The tangent planes to ¥ at m and n are given by
2m"Mx+m-1=0, (42)
2n"Mx+n-1=0. (43)

It follows from the definition of 7, given in §5.3 that the axis of 7, is the line [, formed
by the intersection of the two planes (42) and (43). By theorem 5.3, I, meets 11, at
m X n, thus [, has a parametrization of the form

l—>s+imxn,
where s:(mxn)=0. (44)
It follows from (42), (43) and (44) that [, is given by
t——[(n-lym+ (m-l)n]/|mxn||®*+tm X n. (45)

Let x be any point of R®. The mid-point of the line segment [x,7, x] is on [, thus
there exists a value of ¢, depending on x, such that

sx+7,x]=s+t(mxn). (46)
The line {x,7,x) is orthogonal to [, thus
(x—7,x) (mxn)=0. (47)
It follows from (46) and (47) that
t=x-(mxn)/|lmxn|?.
Phil. Trans. R. Soc. Lond. A (1990)
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On substituting for ¢ in (46) the following expression for 7, x is obtained.

2[(n-ym+(m-hn] 2[x-(mxn)mxn
llm x n||* llm x n|*

7.3. Two cubic constraints on ambiguous surfaces
Two cubic constraints on ambiguous surfaces are obtained. Three theorems are
required to derive the first constraint. The second constraint is obtained more easily.

Theorem 7.3. With the notation of theorem 7.1, let Y be a non-singular ambiguous
surface with principal points m, n, and let cartesian coordinates be chosen such that the
origin o s the optical centre of the camera taking the first image. Let r = mx n, let I be
the normal to the tangent plane to y at o, and let a be a possible optical centre for the
second camera not lying on a generator through o. Then

—4(m-D(n-D+2(ar) l'r)—(al)(rr)=0. (49)

Proof. Let 1, be the unique non-trivial rigid involution of ¥ that fixes both m
and n. It follows from theorem 7.1 that 7, a lies in the tangent plane to  at o, thus
I'7,a = 0. The result follows on substituting the expression for 7, a given by (48) into
the equation I'7,a = 0. O

Theorem 7.4. Let m, n, e,, e,, e, be vectors such that

ey
{m@n+n@m)=|e; |,
€
e; xe,
then mxn)® (mxn)=|ef xe; |. (50)
el xel

Proof. 1t follows from the hypothesis of the theorem that 2e, = m;n+n,m. The
result follows on substituting for e; in (50). O

The first cubic polynomial constraint on ¥ is now obtained.

Theorem 7.5. In the reconstruction problem, let two points in space be given as optical
centres for the cameras taking the first and second images respectively. Then any
ambiguous surface reconstructed from corresponding points in the two images satisfies a
cubic polynomial constravnt.

Proof. Cartesian coordinates are chosen, and the notation of theorem 7.1 is used.
It follows from theorem 5.4 that the equation for ¢ is

x™Mx+1-x =0,
where M, I are defined as in (40) and (41). Define the matrices N, L by
N=i{m®@n+n® m), (51)
L= (mxn)® (mxn). (52)

1t follows from (41) and (51) that N = M —1tr (M)I. The entries of N are thus linear
functions of the entries of M. It follows from theorem 7.4 that the entries of 1. arc
quadratic functions of the entries of M.

Phil. Trans. R. Soc. Lond. A (1990)
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The projective geometry of ambiguous surfaces 39

A cubic polynomial constraint on ¥ is obtained from (49). The term —4(I-m)(I-n)
on the left-hand side of (49) has the form

—4(l-m)(l-n) = —4I"NI. (53)
The remaining two terms on the left-hand side of (49) have the form
2a-r)(l'ry—(a l)(r-r)=2a"LI—(a"l)tr (L). (54)
It follows from (53) and (54) that (49) is equivalent to the cubic constraint
—41"Nl+2a"LI—(a- 1) tr (L) = 0. (55)
4

Corollary. Let e, e}, ef be the rows of N. It follows from theorem 7.5 and (52) that
(55) is equivalent to

T Ty ol Ty o
e} el x e} el x e}
—IT| e; |I+2a"| el xe; ll—(a-Dtr|el xe; |=0. (56)
T T ¥\ T T
e, el x e} el x e

The second cubic polynomial constraint on i referred to at the beginning of this
section is

det (V) = 0. (57)

Equation (57) is well known (Horn 1987). It follows from the observations (i) that N
has rank two; and (ii) that N depends linearly on the coefficients of the equation
defining the ambiguous surface. Equation (57) is equivalent to a simple constraint on
the eigenvalues of the matrix M. To show this, (57) is first written in the form

det [M —Ltr (M)1] = 0.

It follows that 1tr (M) is an eigenvalue of M. Let A,, A,, A, be the eigenvalues of M,
labelled such that A, = tr (M). Then

str (M) = HA,+A,+A,) = A,
Thus (57) is equivalent to A, +A, = A,.

7.4. A special case

The cubic constraints of §7.3 are applied to a particular one-dimensional space of
quadrics on which they take a particularly simple form. The space of quadrics is
constructed such that all the quadrics in the space satisfy (57), and such that within
this space (56) has a simple geometric interpretation.

Let ¥,, ¥, be two non-singular rectangular quadrics with principal points m, n,
and m, n, respectively, such that m, n,, n, lie on a fixed line ¢, and let 0, a be distinct
real points of R® contained in both ¢, and i,. Let {i,,¥,> be the one-dimensional
space of quadrics generated by ¢, and ¥,. A general real quadric ¥ in {y,¥,) has

the form
v = /\11:”14'/\2‘:02’

where (A,,1,) is a real point of P!. The quadric ¥ meets IT in the conic x"Mx =0
where
M=m® (A, n,+A,n)+ (A, n+A,n) @ml—m- (A, n, +A,n,) 1.

Phil. Trans. R. Soc. Lond. A (1990)
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P

Figure 14. The constraint of (56) applied to a pencil of rectangular quadrics.

The quadric ¥ thus satisfies (57) for all choices of (A;, A,). The principal points of
are m, n where n is the point of ¢ given by n = A, n,+ A, n,.

The quadric ¥ contains o and a, since ¥, and ¥, both contain o and a. Let 7, be
the unique non-trivial rigid involution of ¥ that fixes both m and n. Then ¢ is one of
the lines of fixed points of 7,. It follows that the plane & = {g,a) is invariant under
7,. The geometry associated with ¢ is illustrated in figure 14.

Letb=r1,a. Then b is in Z, because a is in =, and £'is invariant under 7. It follows

from (48) that
2[(n-h)m+(m-Nn] 2la-(mxn)lmxn

b=—
lm < n|* lm x n|®
Let N, L be the matrices defined by (51) and (52), respectively. Then
b= (—4Nl+2La)/tr (L)—a. (58)

In (58), b is regarded as a point of R®. It is convenient to regard b as a point of 2.
The projective coordinates of b are

b = (—4NI+2La—tr(L)a, tr (L))"

The matrix N and the vector ! are linear functions of i (or equivalently, linear
functions of (A, A,)). The matrix L is a quadratic function of 3. Thus b is a quadratic
function of ¥. Thus, as { varies, the locus of b is a conic in Z. Let this conic be s, and
let r, s be two distinct fixed points on s. Let g, be the coefficients of <b,r). By
definition, a point x of Z'is on <b, r) if and only if g, x = 0. Similarly, let h, be the
coefficients of (b, s». It follows from Steiner’s theorem that g, and h, are both linear
functions of .

Let IT be the tangent plane to i at 0. Then (56) is satisfied if and only if b lies on
IInE. Let k, be the coefficients of the line /7N Z. The plane /T depends linearly on
¥, and £ is fixed independently of yr, thus k, depends linearly on . The condition
that b lies on both s and on the line k- x =0 is

g(,’/
det| h, [=0,
k,

which is the cubic condition on ¥ equivalent to (55) in this special case.
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The projective geometry of ambiguous surfaces 41

8. Five image correspondences

If only a small number of image correspondences are available then ambiguity is
more likely because the data place fewer constraints on the reconstruction. If the
number of image correspondences is reduced to five, then ambiguity is certain. Each
image correspondence q<«>¢q’ places one constraint on the camera displacement

{R, a} of the form
q - (RgxRa) = 0.

The number of unknown parameters is five, comprising three for the rotation R, and
two for the direction of the translation a. Let N be the number of essentially different
rigid displacements compatible with five image correspondences. For a general choice
of five image correspondences, N is constant, finite and not equal to zero. The number
N is an algebraic measure of the complexity of reconstruction. It is analogous to the
degree of an algebraic curve. Demazure (1988) uses algebraic geometry to prove that
N =10. In this context ten is high, indicating that the reconstruction problem is
difficult. The following four theorems comprise a new proof of Demazure’s result.

Theorem 8.1. Let five image correspondences be given compatible with a given camera
displacement. Then a two-dimensional space of quadrics can be constructed such that any
ambiguous surface compatible with the five image correspondences and compatible with
the given camera displacement vs represented by a point in the two-dimensional space of
quadrics.

Proof. Let cartesian coordinates be chosen with origin 0 at the optical centre of the
camera from which the first image is obtained. Let gq,«<>q; be five image
correspondences compatible with the given camera displacement {&, a}, where R is an
orthogonal matrix and a is the optical centre of the camera from which the second
image is obtained. Let p; be the points in [P? such that the image of p, from o is ¢q,,
and the image of p, from a is g;, as illustrated in figure 15.

An ambiguous surface, compatible with ¢,<>¢q; and compatible with {R,a}
contains the five points p;, together with the points o, a. The space of all quadric
surfaces contained in P? is of dimension nine (Semple & Kneebone 1952). The
condition that a quadric contains a known point imposes a single linear condition on
the quadric, thus the quadric surfaces containing the p;, 0 and a form a (9—7 = 2)-
dimensional space S? within the space of all quadrics. A basis for S* can be calculated
from the p,, o and a. O

Some remarks are made on the choice of basis for the space S constructed in the
proof of theorem 8.1. With the notation of theorem 8.1, let cartesian coordinates be
chosen such that o = (0,0,0, 1)T. Then the quadrics represented by points of S? are

of the form XTMx+1x =0, (59)

where M is a symmetric 3 x 3 matrix and /is a vector. The space S? is two dimensional
(as a projective space), thus there exist symmetric matrices M,, M,, M, and
corresponding vectors I, I,, I, such that the quadrics

Yy =x"M;x+1;-x
span S2. An arbitrary quadric 3 represented by a point of 8% has an equation
Y=Y+ Y+ A Y,
where (A,,A,,A;) is a point of P? determined uniquely by .
Phil. Trans. R. Soc. Lond. A (1990)
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Figure 15. Seven points on a rectangular quadric.

It is not the case that all the quadrics parametrized by points of S? are ambiguous
surfaces. The proof that there are ten essentially different camera displacements
compatible with five image correspondences relies on selecting from S? precisely
those points corresponding to ambiguous surfaces. As a preliminary, it is shown in
the next theorem that each point of S? yields essentially only one camera
displacement, different from the given camera displacement of theorem 8.1, but
compatible with the image correspondences.

Theorem 8.2. Let p be a point of the space S* constructed in theorem 8.1, such that p
represents an ambiguous surface. Then p yields essentially only one rigid displacement
essentially different from the rigid displacement {R,a} used in the construction of S®.

Proof. Let i be the ambiguous surface corresponding to p. Let {R, a} and {S, b} be
two essentially different rigid displacements from which i is obtained as specified by
(7). Let 7, be the unique non-trivial rigid involution of ¥ that fixes the two principal
points of . It follows from theorem 6.1 that the generator {o,b) of i contains
7,a. The direction of b is thus uniquely determined by a and 7,,. Hence, by definition
5.1, {8, b} is essentially unique. O

The ambiguous surfaces represented by points of S§? are found as follows.

Theorem 8.3. Let five image correspondences be given in general position. Let {R, a}
and {S,,b;} (1 <i<N—1) be a complete list of the essentially different camera
displacements compatible with the image correspondences. Then each of the N—1 pairs
{R,a}, (S;,b;} arises from an intersection point of two cubic plane curves.

Proof. The notation of theorem 8.1 is used. Let i, be the ambiguous surface
constructed from {R,a} and {S,, b,} according to (7). It follows from theorem 8.1 that
the i, lie in a two-dimensional subspace S? of the space of all quadrics. Equations
(56) and (57) yield two cubic curves f, g in S%. Each ambiguous surface i, yields an
intersection point of f and g.

Conversely, let ¢ be a quadric surface arising from an intersection of f and g. Then,
by the definition of 8%, y contains the points p, and o, a and i is rectangular because
it satisfies (57). The point b = 7, a lies on a generator of i passing through o, because
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http://rsta.royalsocietypublishing.org/

A
)
p

L

A
R

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

\\‘\

\

//
A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

The projective geometry of ambiguous surfaces 43

Y satisfies (56). It follows from theorem 7.2 that ¥ is an ambiguous surface
constructed from a pair of essentially different rigid displacements {&,a}, (S, b}
compatible with the five image correspondences. Thus ¢ = , for some ¢. O

The only remaining task is to show that the two cubic plane curves f, g in the proof
of theorem 8.3 have, in general, exactly nine distinct intersections.

Theorem 8.4. Let five image correspondences be given in general position. Then there
are exactly ten essentially different camera displacements compatible with the given image
correspondences.

Proof. The notation of theorem 8.1 is used. It suffices to show that the cubic plane
curves f, g of theorem 8.3 have, in general, exactly nine distinct intersections. To do
this, it suffices to produce a single example in which the two curves have nine distinct
intersections.

Let the quadrics parametrized by the points of S% have equations of the form (59),
and let N be defined by (51). The property that two cubic plane curves have nine
distinct intersections is stable against small perturbations in the coefficients of the
curves, thus it is sufficient to consider the case in which the coefficients in (56)
involving a are negligibly small in comparison with the first term —I"NI. In this case
the cubic constraints (56) and (57) reduce to

I"NI =0, det(N)=0.

SN

Let N =

® R

d
b f
f ¢

and let three of the reconstructed points in P? be
p,=(1,0,0,0)", p,=(0,1,0,0)", p,=(0,0,1,0)".
The p, are in IT_, thus pf Mp, = 0, where M is as defined in (40). It follows that
a=b=c¢=0. Hence M = N, and det (N) = def.
The space S? is parametrized by (d,e,f). The components d =0, e=0, f=0 of
det (N) = 0 are considered separately. It suffices to show that, in general, each

component of det (N) = 0 meets the cubic plane curve NI =0 at three distinct
points. It is thus required to find two points of R?,

Ps = [Par> Pas> Pasl™> Ps = [ P51> Ps2r Pssl”s
and a vector a such that
PiMp,+1l'p,=0, piMp,+1l'p;=0, l'a=0, (60)

and such that the line d = 0 (for example) meets I NI = 0 at three distinct points. The
last equation of (60) arises from a™Ma+1-a = 0 on neglecting the terms of second
order in a.

Let a have direction (1,1, —1)%. The last equation of (60) yields I, ={,+/,. On
substituting for /,, the first two equations of (60) yield

2p45(eP4y +fPas) + 1 (Paz + Pus) +a(Dae +P43) = O,} (61)
2p55(eps1 +fPsa) T Li(Ps1 + Psa) + la(Pse + Ps3) = 0.
The equation {"NIl = 0 reduces to
(ly+1,) (el +f1,) = 0. (62)
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It follows from (61) and (62) by direct calculation that for almost all choices of p,,
P there exist three distinct solutions (d, e, f) in P?, obtained as functions of p, and p;.
(Note d = 0.) The remaining two cases e = 0 and f = 0 also each yield three distinct
solutions for (d, e, f) for almost all choices of p,, p;. Thus, in general, a total of nine
distinct intersections of the two cubic plane curves is obtained. ad

In theorem 8.4 the possibility is not ruled out that the intersections of the two
cubic plane curves yield quadrics without real generators. Quadrics obtained in this
way give rise to complex camera displacements compatible with the image
correspondences, but which are not physically acceptable.

9. Image velocities

There is an alternative formulation of the reconstruction problem based on image
velocities rather than image correspondences (Horn 1986, 1987 ; Longuet-Higgins &
Prazdny 1980; Maybank 1985, 1987). In this formulation the relative positions of
points fixed in space are deduced from the velocities of the images of these points due
to motion relative to the camera. Reconstruction based on image velocities is thus
a limiting case of reconstruction based on image correspondences as the displacement
of the camera becomes small.

There are many similarities between the mathematical structure of the two
approaches to reconstruction. For example, the ambiguous surfaces associated with
image velocities are rectangular hyperboloids, and there are, in general, exactly ten
rigid velocities compatible with five given image velocities (Maybank 1989). The
question of the extent of the similarities between the two approaches now arises. As
a partial answer, it is shown that theorem 7.1 does not carry over to the case of image
velocities. In spite of this negative result, the ambiguous surfaces arising from image
velocities are subject to two cubic polynomial constraints analogous to those
obtained in §7.3 for the case of image displacements.

The mathematical framework for reconstruction based on image velocities is as
follows. Let the camera obtain an image of a rigid surface moving with velocity
{v, w}, where v is the translational velocity, and w is the angular velocity taken about
an axis passing through the optical centre of the camera (Sokolnikoff & Redheffer
1966). Maybank (1987) shows that if the image is formed by polar projection onto a
spherical projection surface then the velocities ¢ of image points ¢ are given by

g=[v—(vq)qlK+wxq, (63)
where 1/K is the distance in the direction ¢ from the optical centre of the camera to
the surface.

9.1. Image velocities and ambiguous surfaces

Ambiguous surfaces arise in the case of image velocities just as in the case of image
displacements. Let i be a rigid surface moving with a velocity {w,, v,} relative to the
camera such that the resulting image velocities are compatible with a second rigid
surface ¢ moving with a velocity {w,,v,}, such that v, is not parallel to v,. Let

cartesian coordinates be chosen with origin o at the optical centre of the camera.
Then yr and ¢ are given respectively by the equations
(w-x) (0, X) — (W= v,) (X x) + (v, X 0,) " x = 0, (64)
(w-x) (v, x)—(w-v,) (xx)+ (v, X0,) " x =0, (65)
Phil. Trans. R. Soc. Lond. A (1990)
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where w = w,—w,. As in the case of image displacements, ¢ and ¥ are rectangular
hyperboloids. The intersection ¢ N ¢ is the union of a horopter curve and a common
generator of ¢ and ¢. In addition, v, and v, can be scaled such that both are on the
horopter curve. The vector v, lies on a generator of ¢ passing through o, and v, lies
on a generator of ¢ passing through the o. The quadrics ¥ and ¢ are said to be
complementary ambiguous surfaces. The following theorem shows that in the case of
image velocities there is no theorem analogous to theorem 7.1.

Theorem 9.1. Let yr, ¢ be complementary ambiguous surfaces compatible with the same
image velocities, let 7, be the unique non-trivial rigid skew involution of r that fixes the
principal points of Y, and let 7, be the unique non-trivial rigid involution of the horopter
curve ¢ contained in Y N . Let f and the image velocities be fixed, and let ¢ and hence
¢ vary. Then, in general, T, # 1, for all choices of ¢.

Proof. Let cartesian coordinates be chosen with origin o at the optical centre of the
camera, and let m, n be the principal points of ¢, chosen such that n is also a principal
point of ¢. Let i, ¢ have equations (64), (65) respectively. Then {o,n) is the line
through o with direction w, and {0, m) is the line through o with direction v,. The
line {o,m) is a generator of ¥, whereas (o, n) is, in general not a generator of . The
variation of ¢ referred to in the statement of the theorem is obtained by changing the
length of v,. Suppose, if possible, that for some choice of ¢, 7, = 7,. A contradiction
is obtained as follows.

The line o, m) meets ¢ at just one point, namely the centre c of ¢. Let IT be the
common tangent plane to ¥ and ¢ at o. Then II N ¢ consists of two lines meeting
at 0. Now IIN ¢ contains both o and c. If ¢ # o then the line {o,c) = {o,m) is
contained in ¢. Hence v, defines a principal point of ¢. It follows that

(W 1,) (v, 0,) — (W ;) (v, 0,) = 0. (66)

In general (66) does not hold. Thus o = ¢. It follows that {o,n) is a generator of y,
thus
w: (v, xv,) = 0. (67)

In general (67) does not hold. Thus the hypothesis 7, = 7, does not hold. O

9.2. Cubic constraints on ambiguous surfaces
Let equation (64) for the ambiguous surface i be written in the form
xX™'x+1l-x =0,
where M’ is a 3 x 3 symmetric matrix and [’ is a vector. Define the matrix N’ by
N =M-itr M')1
The cubic constraints analogous to (56) and (57), which apply to ¥ are
"Nl =0, (68)
det (V') = 0. (69)
Equations (68) and (69) are readily obtained from (64). Equation (69) is given by
Horn (1987).
On comparing (68) and (56), it can be seen that (68) is the limit of (56) as the

translation of the camera tends to zero, and simultaneously the rotation of the
camera tends to the identity. Similarly (69) is the limit of (57).
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10. Conclusion

The reconstruction of the relative positions of points in space from the
correspondences between two different images is subject to ambiguity if the points
lie on certain surfaces of degree two. The ambiguous case of reconstruction has been
investigated using the projective geometric methods developed by the photo-
grammetrists during the last century and the first half of this century. These
methods have not so far been exploited in computer vision because they are
expressed in a mathematical framework which has fallen out of fashion, and because
the literature in this area is not widely known. This paper is in part an attempt to
advertise the projective geometric approach. Projective geometry is a theory of
considerable elegance, and the results obtained from it give additional insight into
ambiguity.

Two possible lines for future work are suggested. The first is to clarify the
connections between ambiguity and the general problem of stability of recon-
struction. The two cubic constraints of §7.3 may provide a good starting point. It is
conjectured that instability of reconstruction arises because the two cubic constraints
are near coincident over a wide range of their domain of definition. The second and
related line of research is to investigate the behaviour of algorithms for reconstruction
from image correspondences in the presence of noise as the distances between
corresponding points becomes small.

This work was funded by ESPRIT P940, and was carried out in part while the author was at
MCCS, Frimley, U.K. The author first learnt of the German work on the reconstruction problem
from Tom Buchanan during an extended visit by the author to INRIA, Rocquencourt, at the
invitation of Olivier Faugeras. The author thanks Tom Buchanan for discussions on projective
geometry and on the work of the photogrammetrists dating from the last century and the first half
of this century. Thanks are also due to Bernard Buxton for comments on an earlier draft of this
paper.
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